Electronics and Electrical Engineering and Control

Real-time calculation of missile launch envelope based on auto-encoder network

  • HU Dongyuan ,
  • YANG Rennong ,
  • YAN Mengda ,
  • YUE Longfei ,
  • ZUO Jialiang ,
  • WANG Ying
Expand
  • Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an 710051, China

Received date: 2019-10-14

  Revised date: 2020-01-03

  Online published: 2019-12-26

Abstract

Traditional three-line attack area of medium-range air-to-air missile can’t provide effective tactical decision information for the pilot, and it has poor time effectiveness and low precision in calculation using fire control system. To address these problems, a new type of missile launch envelope, under the consideration of the target escape maneuver, is proposed with the attack aircraft as the center. In this paper, common and effective tactical maneuvers, which are used to escape from missiles successfully, are considered and analyzed through many classic examples of battles. The attack area is abstracted into seven killing envelops. the calculated methods are given and the offline simulations are carried out. The sample database is established by identifying eight motion parameters and envelop-values. By introducing deep learning methods, the Auto-Encoder (AE) network model is constructed. By adopting unsupervised learning, the primary features of the sample are extracted, and the high dimensional vectors describing nonlinearity in the sample database are obtained. The deep network model is established with high dimensional vectors to extract advanced features for fitting. Experimental results show that the loss of the deep network can be controlled within 15 m compared with the six-degree-of-freedom simulation results and the actual missile data. The online calculation time is only 0.04 s, which can meet the real-time requirements. The new missile envelope can provide timely and effective information for pilot to understand enemy situation and support maneuvering decision-making.

Cite this article

HU Dongyuan , YANG Rennong , YAN Mengda , YUE Longfei , ZUO Jialiang , WANG Ying . Real-time calculation of missile launch envelope based on auto-encoder network[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(4) : 323571 -323571 . DOI: 10.7527/S1000-6893.2019.23571

References

[1] 黄睿,刘小方,郑祥.某型导弹性能质量评估系统设计与实现[J].火炮发射与控制学报, 2019, 40(2):88-92. HUANG R, LIU X F, ZHENG X. Design and implementation of a missile performance quality evaluation system[J]. Journal of Gun Launch&Control, 2019, 40(2):88-92(in Chinese).
[2] 史振庆,梁晓龙,张佳强,等.基于导弹攻击区的空战态势评估[J].火力与指挥控制, 2018, 43(9):89-93. SHI Z Q, LIANG X L, ZHANG J Q, et al. Situation assessment for air combat based on missile attack zone[J]. Fire Control&Command Control, 2018, 43(9):89-93(in Chinese).
[3] 付昭旺,于雷,李战武,等.战斗机隐蔽接敌轨迹优化方法[J].国防科技大学学报, 2013, 35(5):52-58. FU Z W, YU L, LI Z W, et al. The trajectory optimization method for fighter stealthy approach[J]. Journal of National University of Defense Technology, 2013, 35(5):52-58(in Chinese).
[4] 董海霞,邹杰,王永庭.基于协同攻击区模型的多机最优攻击占位决策[J].火力与指挥控制, 2018, 43(12):11-15. DONG H X, ZOU J, WANG Y T. Collaborative attack area model for multi-aircrafts of optimal attack occupancy decision[J]. Fire Control&Command Control, 2018, 43(12):11-15(in Chinese).
[5] WANG H, LEI H, YE J, et al. A novel capture region of retro proportional navigation guidance law for intercepting high-speed nonmaneuvering targets[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(6):86-98.
[6] 方学毅,刘俊贤,周德云.基于背景插值的空空导弹攻击区在线模拟方法[J].系统工程与电子技术, 2019, 41(6):1286-1293. FANG X Y, LIU J X, ZHOU D Y. Back ground interpolation for on-line simulation of capture zone of air-to-air missiles[J]. Systems Engineering and Electronics, 2019, 41(6):1286-1293(in Chinese).
[7] 周须峰,易华,谢永强.近距格斗空空导弹三自由度弹道仿真建模[J].四川兵工学报, 2014, 35(2):9-12. ZHOU X F, YI H, XIE Y Q. Modeling on 3DOF trajectory simulation of short range dogfight air-to-air missile[J]. Journal of Sichuan Ordnance, 2014, 35(2):9-12(in Chinese).
[8] 黄威,任洋.基于自适应步长的空空导弹攻击区解算方法[J].电光与控制, 2019, 26(5):55-58. HUANG W, REN Y. Adaptive step-size based calculation of air-to-air missile launch envelopes[J]. Electronics Optics&Control, 2019, 26(5):55-58(in Chinese).
[9] 高胜灵,胡松启.基于Matlab/Simulink的导弹六自由度弹道仿真系统设计[J].科学技术与工程, 2011, 11(1):29-34. GAO S L, HU S Q. Six-degree-of-freedom simulation modelling for missile trajectory based on Matlab/Simulink[J]. Science Technology and Engineering, 2011, 11(1):29-34(in Chinese).
[10] 程翔,李苑青,王丽华.基于OpenGL的六自由度三维弹道仿真技术研究[J].电子科技, 2017, 30(6):16-20. CHENG X, LI Y Q, WANG L H. Research on six degree of freedom 3d trajectory simulation based on opengl[J]. Electronic Science and Technology, 2017, 30(6):16-20(in Chinese).
[11] 俞吉,周德云,周灿辉.基于云模型空空导弹攻击区的拟合方法[J].火力与指挥控制, 2013, 38(7):32-35. YU J, ZHOU D Y, ZHOU C H. A method for approximating allowable attack area for air-to-air missile based on cloud model[J]. Fire Control&Command Control, 2013, 38(7):32-35(in Chinese).
[12] 邓健,王星,曾艳丽,等.基于数据建模的空空导弹攻击区仿真[J].弹箭与制导学报, 2016, 36(4):33-35. DENG J, WANG X, ZENG Y L, et al. Simulation of attack area for air-to-air missile based on data modeling[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(4):33-35(in Chinese).
[13] 张列航,雷蕾,杨长启.中程空空导弹攻击区仿真与拟合[J].航空科学技术, 2010(4):25-27. ZHANG L H, LEI L, YANG C Q. Attack area calculating and data fitting for medium air-to-air missile[J]. Aeronautical Science&Technology, 2010(4):25-27(in Chinese).
[14] 史振庆,梁晓龙,张佳强,等.基于GWO-BP神经网络的攻击区解算方法[J].飞行力学, 2019, 37(3):64-67,92. SHI Z Q, LIANG X L, ZHANG J Q, et al. Solution of attack zone based on GWO-BP neural network[J]. Flight Dynamics, 2019, 37(3):64-67,92(in Chinese).
[15] 孟博.基于BP神经网络的空空导弹攻击大机动目标攻击区仿真研究[J].弹箭与制导学报, 2017, 37(4):43-46,50. MENG B. Research on launch envelopes simulation of air-to-air missile attacking high maneuvering targets based on bp neural network[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2017, 37(4):43-46,50(in Chinese).
[16] 苗涛,杨毅,南英.导弹动态可攻击区实时在线算法研究[J].飞行力学, 2018, 36(2):39-43. MIAO T, YANG Y, NAN Y. Research on real-time online algorithm of missile dynamic attack zone[J]. Flight Dynamics, 2018, 36(2):39-43(in Chinese).
[17] 王志刚,张宁,李伟.一种空空导弹攻击区的快速解算方法[J].固体火箭技术, 2014, 37(4):448-452. WANG Z G, ZHANG N, LI W. A fast solving method for attacking area of air-to-air missile[J]. Journal of Solid Rocket Technology, 2014, 37(4):448-452(in Chinese).
[18] 李枭扬,周德云,冯琦,等.基于遗传规划的空空导弹攻击区拟合[J].弹箭与制导学报, 2015, 35(3):16-18,22. LI X Y, ZHOU D Y, FENG Q, et al. Air-to-air missile launch envelops fitting based on genetic programming[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2015, 35(3):16-18,22(in Chinese).
[19] 徐国训,梁晓龙,张佳强,等.双机空空导弹协同攻击区仿真研究[J].火力与指挥控制, 2019, 44(1):34-39. XU G X, LIANG X L, ZHANG J Q. Simulation research on air-to-air missile cooperating weapon engagement zone of two aircrafts[J]. Fire Control&Command Control, 2019, 44(1):34-39(in Chinese).
[20] 高劲松,赵华超,田省民.空空导弹的两种全向攻击方式的关系[J].电光与控制, 2018, 25(12):16-20. GAO J S, ZHAO H C, TIAN X M. On relationship between two modes of aam's all-aspect attack[J]. Electronics Optics&Control, 2018, 25(12):16-20(in Chinese).
[21] 左家亮,杨任农,张滢,等.分布式半实物环境实时弹道仿真步长自适应研究[J].兵工学报, 2015, 36(4):653-659. ZUO J L, YANG R N, ZHANG Y, et al. Research on the step size of real-time self-adaptation trajector[J]. Acta Armamentar, 2015, 36(4):653-659(in Chinese).
[22] 张彬超,寇雅楠,邬蒙,等.基于深度置信网络的近距空战态势评估[J].北京航空航天大学学报, 2017, 43(7):1450-1459. ZHANG B C, KOU Y N, WU M, et al. Close-range air combat situation assessment using deep belief network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7):1450-1459(in Chinese).
[23] 焦珂,皮亦鸣,陆继珍.空空导弹发射包线的快速计算方法[J].火力与指挥控制, 2010, 35(6):100-102,106. JIAO K, PI Y M, LU J Z. A fast calculation method of launch envelope of air-to-air missile[J]. Fire Control&Command Control, 2010, 35(6):100-102,106(in Chinese).
[24] 刘瑛,李敏强,张瑞峰.复杂机动动作最优航迹控制模型及操纵特性分析[J].控制理论与应用, 2014, 31(5):566-576. LIU Y, LI M Q, ZHANG R F. The optimal trajectory control model of the aircraft maneuver and its operation characteristics[J]. Control Theory&Applications, 2014, 31(5):566-576(in Chinese).
[25] HUI Y, NAN Y, CHEN S, et al. Dynamic attack zone of air-to-air missile after being launched in random wind field[J]. Chinese Journal of Aeronautics, 2015, 28(5):1519-1528.
[26] FANG J, ZHANG L, WEI F, et al. Approximate dynamic programming for CGF air combat maneuvering decision[C]//Proceedings of the 20162nd IEEE International Conference on Computer and Communications (ICCC). Piscataway, NJ:IEEE Press, 2016.
[27] 贾镇泽,樊晓光,薛明浩,等.基于机动动作元的敌机战术机动在线识别方法[J].北京理工大学学报, 2018, 38(8):820-827. JIA Z Z, FAN X G, XUE M H, et al. Online identification method for tactical maneuver of target based on air combat maneuver element[J]. Transactions of Beijing Institute of Technology, 2018, 38(8):820-827(in Chinese).
[28] FANG J, ZHANG L, WEI F, et al. Approximate dynamic programming for CGF air combat maneuvering decision[C]//IEEE International Conference on Computer&Communications. Piscataway, NJ:IEEE Press, 2017.
[29] 杨新,王小虎,申功璋,等.飞机六自由度模型及仿真研究[J].系统仿真学报, 2000(3):36-39. YANG X, WANG X H, SHEN G Z, et al. Modeling and simulation research of six-degree-of-freedom fighter[J]. Journal of System Simulation,2000(3):36-39(in Chinese).
[30] 方振平.航空飞行器飞行动力学[M].北京:北京航空航天大学出版社,2005. FANG Z P. Aviation vehicle flight dynamics[M]. Beijing:Beihang Universtity Press,2005(in Chinese).
[31] 董肖杰,余敏建,宋帅.空战机动动作库及控制算法设计研究[C]//第五届中国指挥控制大会, 2017. DONG X J, YU M J, SONG S. Research on the design of air combat maneuver library and control arithmetic of movements[C]//Proceedings of the 5th China Command and Control Conference,2017(in Chinese).
[32] 林德福,王辉,王江,等.战术导弹自动驾驶仪设计与制导律分析[M].北京:北京理工大学出版社,2012. LIN D F, WANG H, WANG J, et al. Autopilot design and guidance law analysis for tactical missile[M]. Beijing:Beijing Institute of Technology Press, 2012(in Chinese).
[33] 潘广源,柴伟,乔俊飞. DBN网络的深度确定方法[J].控制与决策, 2015, 30(2):256-260. PAN G Y, CHAI W, QIAO J F. Calculation for depth of deep belief network[J]. Control and Decision, 2015, 30(2):256-260(in Chinese).
Outlines

/