Fluid Mechanics and Flight Mechanics

Experiment on bristle deflection and oscillation characteristics of brush seals

  • SUN Dan ,
  • DU Chenyu ,
  • LIU Yongquan ,
  • ZHAN Peng ,
  • XIN Qi
Expand
  • 1. School of Aero-engine, Shenyang Aerospace University, Shenyang 110136, China;
    2. Shenyang Engine Design and Research Institute, Aero Engine Corporation of China, Shenyang 110015, China;
    3. Key Lab for Power Transmission of Aero Engine, Aero Engine Corporation of China, Shenyang 110015, China

Received date: 2019-08-09

  Revised date: 2019-12-30

  Online published: 2019-12-26

Supported by

National Natural Science Foundation of China (51675351); China Postdoctoral Science Foundation (2018M633572); College Innovation Talent Support Program of Liaoning Province (LR2016033)

Abstract

The problem of the leakage and bristle fracture produced by the bristle deflection and oscillation of brush seals is very prominent. In this paper, the theoretical model of the bristle deflection and oscillation of brush seals is analyzed, the device of observation experiment for the bristle deflection and oscillation characteristics of brush seals is designed. Experimental pieces of brush seals for low hysteresis at three circumferential inclination angles are designed and processed. Moreover, the bristle axial deflection characteristics, bristle blow down effect, bristle stratification, and bristle oscillation characteristics are experimentally observed and studied, revealing the bristle movement of brush seals. The results show that the axial deflection of the bristle tips increases linearly with the increase of the pressure ratio when the inlet-to-outlet pressure ratios are between 1.5 to 4, and the circumferential inclination angles have little effect on the bristle axial deflection. The blow down effect of the front row is significantly stronger than that of the rear row. Under the research conditions of this paper, the maximum amount of bristle blow down of brush seals with circumferential inclinations angles of 50°, 55° and 60° is 0.60, 0.45 and 0.34 mm respectively. With the increase of the circumferential inclination angle, the blow down effect is gradually weakened. Under the influence of the air force, brush seals bristle produces axial deflection, and the bristle tips are subject to the unequal axial frictional force of the rotor surface. Brush seals bristle produces unequal axial deflection, resulting in large gaps inside the bristle pack, and forming bristle stratification. The bristle oscillation mainly occurs in the region where the bristle density is relatively loose, and with the increase of the pressure ratio, the displacement of the bristle tip is oscillating. Its amplitude in the axial direction is greater than that in the circumferential direction.

Cite this article

SUN Dan , DU Chenyu , LIU Yongquan , ZHAN Peng , XIN Qi . Experiment on bristle deflection and oscillation characteristics of brush seals[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(10) : 123364 -123364 . DOI: 10.7527/S1000-6893.2019.23364

References

[1] CHUPP R E, GHASRIPOOR F, TURNPUIST N, et al. Advanced seals for industrial turbine applications:Dynamics seal development[J].Journal of Propulsion and Power, 2002, 18(2):1260-1266.
[2] 李军,晏鑫,李志刚. 热力透平密封技术[M]. 西安:西安交通大学出版社, 2015:1-15. LI J,YAN X,LI Z G. Thermal turbine sealing technology[M]. Xi'an:Xi'an Jiaotong University Press, 2015:1-15(in Chinese).
[3] 孙丹, 卢江, 刘永泉, 等. 篦齿封严风阻温升特性研究[J].航空学报, 2018, 39(11):122348. SUN D, LU J, LIU Y Q, et al. Investigation on windage heating characteristics of labyrinth seals[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(11):122348(in Chinese).
[4] 李军, 李志刚, 张元桥, 等. 刷式密封技术的研究进展[J].航空发动机, 2019, 45(2):74-84. LI J, LI Z G, ZHANG Y Q, et al. Research progress of brush seal technology[J].Aeroengine, 2019, 45(2):74-84(in Chinese).
[5] 王之栋, 梁小峰. 刷式密封二维模型数值计算[J].航空动力学报, 2008, 23(8):1461-1465. WANG Z D, LIANG X F. Two-dimensional model mathematical simulation of brush seals[J].Journal of Aerospace Power, 2008, 23(8):1461-1465(in Chinese).
[6] FRANCESCHINI G, JONES T V, GILLESPIE D R H. Improved understanding of blow-down in filament seals[J].Journal of Turbomachinery, 2010, 132(4):041004.
[7] CHEW J W, HOGG S I. Porosity modeling of brush seals[J].Journal of Tribology, 1997, 119(4):769-775.
[8] MODI V. Modeling bristle lift-off in idealized brush seal configurations[C]//The 1992 Seals Flow Code Development Workshop. Washington, D.C.:NASA, 1993:217-232.
[9] 黄首清, 索双富, 李永健, 等. 几何参数对刷式密封泄漏和刷丝尖端力的影响[J].航空动力学报, 2016, 31(1):196-202. HUANG S Q, SUO S F, LI Y J, et al. Influences of geometric parameters on leakages and bristle tip forces in brush seals[J].Journal of Aerospace Power, 2016, 31(1):196-202(in Chinese).
[10] 孙丹, 刘宁宁, 胡广阳, 等. 考虑刷丝变形的刷式密封流场特性与力学特性流固耦合研究[J].航空动力学报, 2016, 31(10):2544-2553. SUN D, LIU N N, HU G Y, et al. Fluid-structure interaction investigation on the flow field and mechanical characteristic in brush seals with bristle deflection[J].Journal of Aerospace Power, 2016, 31(10):2544-2553(in Chinese).
[11] CHUPP R E, DOWLER C A. Performance characteristics of brush seals for limited-life engines[J].Journal of Engineering for Gas Turbines and Power, 1993, 115(2):390-396.
[12] BAYLEY F J, LONG C A. A combined experimental and theoretical study of flow and pressure distributions in a brush seal[J].Journal of Engineering for Gas Turbines and Power, 1993, 115(2):404-410.
[13] RABEN M, FRIEDRICHS J, HELMIS T, et al. Brush seals used in steam environments chronological wear development and the impact of different seal designs[J].Journal of Engineering for Gas Turbines and Power, 2016, 138(5):051901.
[14] SCHWARZ H, FRIEDCRICHS J, FLEGLER J. Design parameters of brush seals and their impact on seal performance:GT2012-68956[R]. New York:ASME, 2012.
[15] HILDEBRANDT M, SCHWITZKE C, BAUER H J. Experimental investigation on the influence of geometrical parameters on the frictional heat Input and leakage performance of brush seals[J].Journal of Engineering for Gas Turbines and Power, 2017, 141(4):042504.
[16] 孙晓萍, 李卫东, 刘晓远. 刷式密封设计与试验研究[J].航空发动机, 2005, 31(2):17-19. SUN X P, LI W D, LIU X Y. Design and test of brush seal[J].Aeroengine, 2005, 31(2):17-19(in Chinese).
[17] 王之栎, 郭苗苗, 李理科. 刷密封刷丝力学行为与密封性能[J].北京航空航天大学学报, 2011, 37(10):1218-1222. WANG Z L, GUO M M, LI L K. Mechanical behaviors of brush seals and sealing performance[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(10):1218-1222(in Chinese).
[18] 邱波, 李军, 冯增国, 等. 两级刷式密封泄漏特性的实验与数值研究[J].西安交通大学学报, 2013, 47(7):7-12. QIU B, LI J, FENG Z G, et al. Experimental and numerical investigations of the leakage characteristics of two-stage brush seal[J].Journal of Xi'an Jiaotong University, 2013, 47(7):7-12(in Chinese).
[19] 杜春华, 吉洪湖, 胡娅萍, 等. 低前挡板型小尺寸刷式封严泄漏特性的试验[J].航空动力学报, 2017, 32(2):298-305. DU C H, JI H H, HU Y P, et al. Experimental investigation on leakage characteristics of small size brush seal with low front plate[J].Journal of Aerospace Power, 2017, 32(2):298-305(in Chinese).
[20] 周坤, 力宁, 郭徽, 等. 低滞后刷式密封泄漏特性试验研究[J].润滑与密封, 2017, 42(4):132-136. ZHOU K, LI N, GUO H, et al. Experimental investigation on leakage characteristics of low hysteresis brush seals[J].Lubrication Engineering, 2017, 42(4):132-136(in Chinese).
[21] 孙丹, 丁海洋, 李国勤, 等. 基于流固耦合的刷式密封泄漏特性理论与实验[J].航空动力学报, 2019, 34(7):1519-1529. SUN D, DING H Y, LI G Q, et al. Theory and experiment on the leakage characteristics of brush seals based on fluid-structure interaction[J].Journal of Aerospace Power, 2019, 34(7):1519-1529(in Chinese).
[22] 孙丹, 白伟钢, 刘宁宁, 等. 基于能量法的刷式密封刷丝颤振流固耦合研究[J].推进技术, 2018, 39(3):619-629. SUN D, BAI W G, LIU N N, et al. Fluid-solid interaction study of brush seals bristle oscillation with energy method[J].Journal of Propulsion Technology, 2018, 39(3):619-629(in Chinese).
[23] 王喜春, 苏华, 宗兆科. 周向收敛型动压式指尖密封的结构优化及其动态性能仿真[J].航空学报, 2011, 32(2):360-367. WANG X C, SU H, ZONG Z K, Structural optimization and dynamic simulation of circumferential convergent hydrodynamic finger seal[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(2):360-367(in Chinese).
[24] 郎达学, 苏华. 表面织构靴底流体动压指尖密封的性能分析[J].航空学报, 2012, 33(8):1540-1546. LANG D X, SU H. Performance analysis of surface texture padded finger seal[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1540-1546(in Chinese).
[25] 钱翼稷. 空气动力学[M]. 北京:北京航空航天大学出版社, 2004:116-117. QIAN Y J. Aerodynamics[M]. Beijing:Beihang University Press, 2004:116-117(in Chinese).
[26] KHAN N B, IBRAHIM Z, KHAN M I, et al. VIV study of an elastically mounted cylinder having low mass-damping ratio using RANS model[J].International Journal of Heat and Mass Transfer, 2018, 121:309-314.
[27] 邱滋华, 徐敏, 张斌, 等. 适用于涡激振荡问题研究的并行高精度方法[J].航空学报, 2019, 40(3):122483. QIU Z H, XU M, ZHANG B, et al. A parallel high-order method for simulating vortex-induced vibrations[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(3):122483(in Chinese).
Outlines

/