Solid Mechanics and Vehicle Conceptual Design

A backstepping method of gas turbine unbalance vector based on dimension reduction and reconstruction of full speed coefficient matrix

  • WANG Chen ,
  • ZUO Yanfei ,
  • JIANG Zhinong ,
  • HU Minghui ,
  • FENG Kun
Expand
  • 1. Key Laboratory of Engine Health Monitoring-Control and Networking, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China;
    2. Aero Engine Vibration Health Monitoring-Control Joint Lab, China Aeronautical Power Institute, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 2019-11-22

  Revised date: 2019-12-15

  Online published: 2019-12-19

Supported by

Postdoctoral Innovation Talent Support Program (BX20180031); Basic Scientific Research Project of Central University (JD1911, JD1913)

Abstract

Whole machine dynamic balance can greatly improve the efficiency of unbalanced vibration control for gas turbine engine. However, because of the particularity in structure, the unbalanced response of the rotor cannot be directly measured, making the whole machine balance difficult. Therefore, considering the structural vibration characteristics of the whole machine system overall the full speed range and the influence of distributed unbalance vector, the response coefficient matrix between vibration response of each measuring point and unbalance vector on each blisk is obtained through simulation or test, and the equivalent unbalance vector backstepping equations are established. According to the sensitivity relationship between the unbalance vector position, rotational speed, and the measuring point, the full speed range response coefficient matrix goes through dimension reduction and reconstruction. The equivalent unbalance vector of the rotor is obtained via choosing optimal balancing positions and measuring points and rotational speeds. The effectiveness of the proposed method is verified by numerical simulation analysis of a typical dual-rotor gas turbine engine. This method is valuable for gas turbine engine rotor balance.

Cite this article

WANG Chen , ZUO Yanfei , JIANG Zhinong , HU Minghui , FENG Kun . A backstepping method of gas turbine unbalance vector based on dimension reduction and reconstruction of full speed coefficient matrix[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(11) : 223670 -223670 . DOI: 10.7527/S1000-6893.2019.23670

References

[1] 黄金平, 任兴民, 邓旺群, 等. 基于不平衡加速响应信息的柔性转子双面平衡[J]. 航空学报, 2010, 31(2):400-409. HUANG J P, REN X M, DENG W Q, et al. Two-plane balancing of flexible rotor based on accelerating unbalancing response data[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):400-409(in Chinese).
[2] 李鹏飞, 王娟, 赵洪丰. 航空发动机转子静、偶不平衡量控制方法研究[J]. 航空科学技术, 2019, 30(3):13-18. LI P F, WANG J, ZHAO H F. Research on the control method of aeroengine rotor static and couple unbalance[J]. Aeronautical Science and Technology, 2019, 30(3):13-18(in Chinese).
[3] BALLAL D R, ZELINA J. Progress in aeroengine technology (1939——2003)[J]. Journal of Aircraft, 2015, 41(1):43-50.
[4] 伍良生, 晁慧泉, 张仕海. 基于最小二乘法的转子不平衡振动信号的提取[J]. 机械设计与制造, 2012(2):194-196. WU L S, CHAO H Q, ZHANG S H. Extraction of unbalance vibration signal of rotor based on least square method[J]. Machinery Design and Manufacture, 2012(2):194-196(in Chinese).
[5] HOU L, CHEN Y, FU Y, et al. Application of the HB-AFT method to the primary resonance analysis of a dual-rotor system[J]. Nonlinear Dynamics, 2017, 88(4):2531-2551.
[6] 冯健朋, 赵小勇. 航空发动机振动不平衡相位检测方法研究[J]. 燃气涡轮试验与研究, 2018, 31(3):38-42. FENG J P, ZHAO X Y. Gas turbine experiment and research[J]. Gas Turbine Experiment and Research, 2018, 31(3):38-42(in Chinese).
[7] 魏塬, 徐武彬, 张宏献. 基于LabVIEW的转子动平衡相位测量[J]. 机械设计与制造, 2011(12):81-83. WEI Y, XU W B, ZHANG H X. Phase measurement of rotor dynamic-balancing based on LabVIEW[J]. Machinery Design and Manufacture, 2011(12):81-83(in Chinese).
[8] TORRES CEDILLO S G, BONELLO P. An equivalent unbalance identification method for the balancing of nonlinear squeeze-film damped rotor dynamic systems[J]. Journal of Sound and Vibration, 2016, 360:53-73.
[9] 温登哲, 陈予恕. 航空发动机机匣动力学研究进展与展望[J]. 动力学与控制学报, 2013, 11(1):12-19. WEN D Z, CHEN Y S. Review and prospect on the research of aero engine casing dynamics[J]. Journal of Dynamics and Control, 2013, 11(1):12-19(in Chinese).
[10] 邓旺群, 王桢, 舒斯荣, 等. 涡轴发动机细长柔性转子动力特性及高速动平衡技术研究[J]. 振动与冲击, 2012(7):171-174. DENG W Q, WANG Z, SHU S R, et al. Dynamic characteristics and high speed dynamic balance technique for a power turbine rotor of a turbo-shaft engine[J]. Journal of Vibration and Shock, 2012(7):171-174(in Chinese).
[11] WAGNER N, HELFRICH R. Static and dynamic analysis of a rod-fastened rotor[C]//Proceedings of NAFEMS World Congress. Stockholm:Intes, 2017:NWC17_372.
[12] KUAIA T, ZHAO C, REN J, et al. Study on the effect of temperature on dynamic characteristics of rotor system with straight crack[J]. Journal of Physics:Conference Series, 2019, 1187:032061.
[13] 马英群, 张锴, 徐蒙, 等. 多重激励下机匣振动能量传递规律与耦合特性[J]. 推进技术, 2019, 40(6):511-520. MANG Y Q, ZHANG K, XU M, et al. Investigation on transmitting regularities and coupling characteristics of vibrational energy for casing structure under multiple excitations[J]. Journal of Propulsion Technology, 2019, 40(6):511-520(in Chinese).
[14] SALLES L, STAPLES B, HOFFMANN N, et al. Continuation techniques for analysis of whole aeroengine dynamics with imperfect bifurcations and isolated solutions[J]. Nonlinear Dynamics, 2016, 86(3):1897-1911.
[15] 张大义, 刘烨辉, 洪杰, 等. 航空发动机整机动力学模型建立与振动特性分析[J]. 推进技术, 2015, 36(5):132-137. ZHANG D Y, LIU Y H, HONG J, et al. Investigation on dynamical modeling and vibration characteristics for aero engine[J]. Journal of Propulsion Technology, 2015, 36(5):132-137(in Chinese).
[16] 刘永泉, 王德友, 洪杰, 等. 航空发动机整机振动控制技术分析[J]. 航空发动机, 2013, 39(5):1-8, 13. LIU Y Q, WANG D Y, HONG J, et al. Analysis of whole aeroengine vibration control technology[J]. Aeroengine, 2013, 39(5):1-8, 13(in Chinese).
[17] 孙凯, 宋会英, 王少辉, 等. 航空发动机整机结构分析及其在工程设计中的应用[J]. 噪声与振动控制, 2016, 36(2):77-83. SUN K, SONG H Y, WANG S H, et al. Whole aero-engine structure analysis and its application in engine design[J]. Noise and Vibration Control, 2016, 36(2):77-83(in Chinese).
[18] ZUO Y F, WANG J J. A component mode synthesis method for 3-D finite element models of aero-engines[J]. Journal of Mechanical Science and Technology, 2015, 29(12):5157-5166.
[19] 冯坤, 朱振桥, 左彦飞, 等. 薄壁机匣发动机轴承位置不平衡响应矢量逆推方法[J]. 振动与冲击, 2020,39(16):89-95. FENG K, ZHU Z Q, ZUO Y F, et al. A reverse method of unbalance response at bearing position of thin-walled casing engines[J]. Journal of Vibration and Shock, 2020, 39(16):89-95(in Chinese).
[20] 李敏. 民用航空发动机整机转子动平衡浅析[J]. 内燃机与配件, 2018(13):73-75. LI M. Analysis on the rotor balancing of civil aviation engine[J]. Internal Combustion Engine and Parts, 2018(13):73-75(in Chinese).
[21] 隆昌菊. 伪逆矩阵与线性方程组[J]. 重庆职业技术学院学报, 2006(6):158-159. LONG C J. Pseudoinverse matrix and linear equation[J]. Journal of Chongqing Vocational and Technical Institute, 2006(6):158-159(in Chinese).
Outlines

/