Electronics and Electrical Engineering and Control

Feasibility analysis for underlying indictors in control performance evaluation of hypersonic vehicles

  • ZHU Hongxu ,
  • LIU Yanbin ,
  • CAO Rui ,
  • LU Yuping ,
  • TANG Jiajun ,
  • YI Chunlun
Expand
  • 1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    3. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100083, China

Received date: 2019-07-01

  Revised date: 2019-12-24

  Online published: 2019-12-19

Supported by

National Natural Science Foundation of China (11572149); Open Foundation for Graduate Innovation Base of NUAA (kfjj20180311); Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems(VRLAB2018C04)

Abstract

In order to judge whether the control performance evaluation strategy can be applied to hypersonic vehicles, a feasibility analysis of the bottom parameters is addressed. First, the modeling characteristics of hypersonic vehicles are analyzed, proposing two requirements to make sure that the underlying indictors can be applied to control the performance evaluation of hypersonic vehicles. According to the two requirements, the feasibility analysis is converted to the investigation of the map from mission variables to underlying indictors, and a method based on statistical experiments is proposed to analyze the map. Combined with the characteristics of the hypersonic vehicle model, the flow of the feasibility analysis using the underlying indicators for hypersonic flight mission evaluation is further designed. Then, following the analytic flow, hypersonic flight examples of static mission and command tracking are analyzed, proposing frequency domain indicators and time domain indicators. The simulation is conducted for the first example. Static margin and the restricted elevator deflection are set as mission requirements, while damping and frequency characteristics are set as evaluation parameters. Numerical results indicate that the conclusion of analysis is consistent with the view of military standards, and the analysis flow is relatively easy to implement.

Cite this article

ZHU Hongxu , LIU Yanbin , CAO Rui , LU Yuping , TANG Jiajun , YI Chunlun . Feasibility analysis for underlying indictors in control performance evaluation of hypersonic vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(3) : 323259 -323259 . DOI: 10.7527/S1000-6893.2019.23259

References

[1] 冯振欣, 郭建国, 周军. 高超声速飞行器新型预设性能控制器设计[J]. 宇航学报, 2018, 39(6):656-663. FENG Z X, GUO J G, ZHOU J. Novel prescribed performance controller design for a hypersonic vehicle[J]. Journal of Astronautics, 2018, 39(6):656-663 (in Chinese).
[2] 郁嘉, 杨鹏飞, 严德. 高超声速飞行器模型不确定性影响分析[J]. 航空学报, 2015, 36(1):192-200. YU J, YANG P F, YAN D. Influence analysis of hypersonic flight vehicle model uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):192-200 (in Chinese).
[3] GREENE K M, KUNZ D L, COTTING M C. Toward a flying qualities standard for unmanned aircraft[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2014.
[4] GURUSWAMY G. Dynamic stability analysis of hypersonic transport during reentry[C]//Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2016:3374-3381.
[5] HAYA-RAMOS R, PENIN L, PARIGINI C, et al. Flying qualities analysis for re-entry vehicles:Methodology and application[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2011.
[6] 陈柏屹, 刘燕斌, 雷灏, 等.输入饱和及带宽限制下高超飞行器的闭环稳定边界研究[J].控制理论与应用, 2016,33(11):1508-1518. CHEN B Y, LIU Y B, LEI H, et al. Stability boundary analysis of hypersonic vehicle with control saturation and bandwidth limitation[J]. Control Theory & Applications, 2016,33(11):1508-1518 (in Chinese).
[7] MILLER R B, PACHTER M. Maneuvering flight control with actuator constraints[J]. Journal of Guidance Control & Dynamics, 2015, 20(4):729-734.
[8] LIU Y B, XIAO D B, LU Y P. Research on advanced flight control methods based on actuator constraints for elastic model of hypersonic vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(9):1627-1637.
[9] 陆宇平, 陈柏屹, 刘燕斌, 等.吸气式高超声速飞行器考虑控制约束的设计优化[J].控制理论与应用, 2014, 31(12):1695-1706. LU Y P, CHEN B Y, LIU Y B, et al. Control relevant design optimization for air-breathing hypersonic vehicle considering performance limitation[J]. Control Theory & Applications, 2014,31(12):1695-1706 (in Chinese).
[10] 马卫华. 高超声速飞行器制导与控制性能评估方法[J].航天控制, 2012,30(4):7-12. MA W H. Research on evaluation method of guidance and control performance for hypersonic vehicle[J]. Aerospace Control, 2012, 30(4):7-12 (in Chinese).
[11] 杨琪琛, 宗群, 董琦. 高超声速飞行器再入控制与性能评估方法[J].信息与控制, 2017, 46(1):33-40. YANG Q S, ZONG Q, DONG Q. Reentry control and performance evaluation method for hypersonic vehicle[J]. Information and Control, 2017, 46(1):33-40 (in Chinese).
[12] 顾杰, 张曙光, 杨帆, 等. 再入飞行器沉浮特性近似解析及应用[J].航空学报,2017,38(10):38-49. GU J, ZHANG S G, YANG F, et al. Approximate analytical analysis for phugoid characteristic of reentry vehicles and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2017,38(10):38-49 (in Chinese).
[13] CHEN X Q, HOU Z X, LIU J X, et al. Phugoid dynamic characteristic of hypersonic gliding vehicles[J]. Science China (Information Sciences), 2011, 54(3):542-550.
[14] SMARSLOK B P, CULLER A J, MAHADEVAN S. Error quantification and confidence assessment of aerothermal model predictions for hypersonic aircraft[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2012.
[15] HEBBAL A, BREVAULT L, BALESDENT M. Multi-objective optimization using deep gaussian processes:Application to aerospace vehicle Design[C]//AIAA SciTech Forum. Reston, VA:AIAA, 2019.
[16] Flying Qualities of Piloted Airplanes:MIL-F-8785C[S]. Washington, D.C.:US:Department of Defense, 1980.
[17] VIAVATTENE G, MOOJI E. Flying qualities and controllability of hypersonic spaceplanes[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2019.
[18] 周志华. 机器学习[M]. 第1版. 北京:清华大学出版社, 2016:29-30. ZHOU Z H. Machine learning[M]. 1st ed. Beijing:Tsinghua University Press, 2016:29-30 (in Chinese).
[19] ZINNECKER A, SERRANI A, BOLENDER M A, et al. Combined reference governor and anti-windup design for constrained hypersonic vehicles models[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2009.
[20] 肖地波, 陆宇平, 刘燕斌, 等. 应用保护映射理论的高超声速飞行器自适应控制律设计[J].航空学报,2015,36(10):3327-3337. XIAO D B, LU Y P, LIU Y B, et al. Adaptive control law design using guardian maps theory for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(10):3327-3337 (in Chinese).
[21] 王永革, 滕岩梅, 贾超华, 等. 应用泛函分析[M]. 第1版. 北京:北京航空航天大学出版社, 2012:45-59. WANG Y G, TENG Y M, JIA C H, et al. Practical functional analysis[M]. 1st ed. Beijing:Beihang University Press, 2012:45-59 (in Chinese).
[22] ZONG Q, JI Y H, ZENG F L, et al. Output feedback back-stepping control for a generic hypersonic vehicle via small-gain theorem[J]. Aerospace Science and Technology, 2012, 23:409-417.
[23] BU X W, WU X Y, ZHANG R, et al. Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle[J]. Journal of the Franklin Institute, 2015, 352(4):1739-1765.
[24] 戴华. 矩阵论[M]. 第1版. 北京:科学出版社, 2001:189-193. DAI H. Matrix analysis[M]. 1st ed. Beijing:Science Press, 2001:189-193 (in Chinese).
[25] Flying Qualities of Piloted Vehicles:MIL-STD-1797[S]. Washington, D.C.:USAF, 1987-03.
[26] FIELD E J, ROSSITTO K F, HODGKINSON J. Flying qualities applications of frequency responses identified from flight data[J]. Journal of Aircraft, 2004, 41(4):711-720.
[27] 张勇, 陆宇平, 刘燕斌, 等.高超声速飞行器控制一体化设计[J].航空动力学报,2012,27(12):2724-2732. ZHANG Y, LU Y P, LIU Y B, et al. Control integrated design for hypersonic vehicle[J]. Journal of Aerospace Power, 2012,27(12):2724-2732 (in Chinese).
[28] GROVES K P, SIGTHORSSON D O, SERRANI A. Reference command tracking for a linearized model of an air-breathing hypersonic vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2005.
[29] BOLENDER M A, DOMAN D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2):374-387.
[30] 张登辉, 马萍, 晁涛, 等.高超声速飞行器制导控制系统性能评估[J].系统工程与电子技术,2018, 40(8):1811-1816. ZHANG D H, MA P, CHAO T, et al. Performance evaluation of guidance and control system for hypersonic vehicle[J]. Systems Engineering and Electronic, 2018, 40(8):1811-1816 (in Chinese).
Outlines

/