[1] 李国强, 常智强, 张鑫, 等. 翼型动态失速等离子体流动控制试验[J]. 航空学报, 2018, 39(8):122111. LI G Q, CHANG Z Q, ZHANG X, et al. Plasma flow control test for airfoil dynamic statics[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):122111(in Chinese).
[2] 杨慧强, 许和勇, 叶正寅. 基于联合射流的翼型动态失速流动控制研究[J]. 航空工程进展, 2018, 9(4):120-130. YANG H Q, XU H Y, YE Z Y. Study on the flow control of the airfoil dynamic stall using the co-flow jet[J]. Advances in Aeronautical Science and Engineering, 2018, 9(4):120-130(in Chinese).
[3] HIMMELSKAMP H. Profile investigations on a rotating airscrew[M]. Göttingen:Ministry of Aircraft Production, 1947:832.
[4] HAM N D. Aerodynamic loading in a two-dimensional airfoil during dynamic stall[J]. AIAA Journal, 1968, 6(10):1927-1934.
[5] EKATERINARIS J A, PLATZER M. Computational prediction of airfoil dynamic stall[J]. Progress in Aerospace Sciences, 1998, 33(11-12):759-846.
[6] 王清, 招启军, 赵国庆. 旋翼翼型动态失速流场特性PIV试验研究及L-B模型修正[J]. 力学学报, 2014, 46(4):631-635. WANG Q, ZHAO Q J, ZHAO G Q. PIV experiments on flowfield characteristics of rotor airfoil dynamic stall and modifications of L-B model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4):631-635(in Chinese).
[7] 叶辉, 吴庆宪, 陈谋. 非定常条件下大迎角机动控制[J]. 哈尔滨工业大学学报, 2016, 48(4):84-90. YE H, WU Q X, CHEN M. Control of high angle of attack maneuver under unsteady aerodynamic condition[J]. Journal of Harbin Institute of Technology, 2016, 48(4):84-90(in Chinese).
[8] 屠宝锋, 胡骏. 压气机三维非定常动态失速过程试验研究[J]. 航空学报, 2010, 31(11):2124-2129. TU B F, HU J. Experimental investigation on three-dimensional unsteady stall inception in compressors[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2124-2129(in Chinese).
[9] SEYEDNIA M, MASDARI M, VAKILIPOUR S. The influence of oscillating trailing-edge flap on the dynamic stall control of a pitching wind turbine airfoil[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(4):192.
[10] BANGGA G. Numerical studies on dynamic stall characteristics of a wind turbine airfoil[J]. Journal of Mechanical Science and Technology, 2019, 33(3):1257-1262.
[11] LARSEN J W, NIELSEN S R K, KRENK S. Dynamic stall model for wind turbine airfoils[J]. Journal of Fluids & Structures, 2007, 23(7):959-982.
[12] 白鹏, 崔尔杰, 周伟江, 等. 等速上仰翼型动态失速现象研究[J]. 力学学报, 2004, 36(5):569-576. BAI P, CUI E J, ZHOU W J, et al. Study on dynamic stayout of isokinetic upturn airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(5):569-576(in Chinese).
[13] KORN J. Estimated effect of circumferential distortion on axial compressors using parallel compressor theory and dynamic stall delay[C]//12th Aerospace Sciences Meeting, 1974.
[14] RICHEZ F. Analysis of dynamic stall mechanisms in helicopter rotor environment[J]. Journal of the American Helicopter Society, 2018, 63(2):1-11.
[15] NIU J, LEI J, LU T. Numerical research on the effect of variable droop leading-edge on oscillating NACA 0012 airfoil dynamic stall[J]. Aerospace Science & Technology, 2018, 72:476-485.
[16] 蒋瑾, 杨爱明, 翁培奋. 合成射流用于动态失速控制的数值模拟[J]. 上海大学学报(自然科学版), 2008, 14(4):405-411. JIANG J, YANG A M, WENG P F. Numerical simulation of dynamic stall control using synthetic jet[J]. Journal of Shanghai University (Natural Science), 2008, 14(4):405-411(in Chinese).
[17] 王清. 旋翼动态失速力学机理及气动外形优化研究[D]. 南京:南京航空航天大学, 2017:61-72. WANG Q. Research on dynamic stall mechanics mechanism and aerodynamic shape optimization of rotor[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:61-72(in Chinese).
[18] 刘峥. 动态失速对直升机空中共振的影响分析[D]. 南京:南京航空航天大学, 2013:3-8. LIU Z. Effects of dynamic stall on helicopter air resonance[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:3-8(in Chinese).
[19] 王荣. 直升机旋翼桨毂振动载荷与桨叶动态失速控制[D]. 南京:南京航空航天大学, 2012:67-75. WANG R. Vibration load of rotor hub and dynamic stall control of rotor blade[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:67-75(in Chinese).
[20] FERREIRA C S, VAN BUSSEL G, VAN KUIK G. 2D CFD simulation of dynamic stall on a vertical axis wind turbine:Verification and validation with PIV measurements[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2007.
[21] 陈文轩. 直升机动态失速研究[J]. 直升机技术, 2008, 155(3):4-18. CHEN W X. Research on dynamic stall of helicopter[J]. Helicopter Technique, 2008, 155(3):4-18(in Chinese).
[22] 陈文轩. CFD法中的动态失速模拟[J]. 直升机技术, 2008,155(3):55-68. CHEN W X. Dynamic stall simulation in CFD[J]. Helicopter Technique, 2008, 155(3):55-68(in Chinese).
[23] 孔卫红, 陈仁良, 孙振航. 旋翼翼型低速动态失速研究[J]. 南京航空航天大学学报, 2018, 50(2):213-220. KONG W H, CHEN R L, SUN Z H. Study on low-speed dynamic stall of rotor airfoil[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2018, 50(2):213-220(in Chinese).
[24] 王适存, 徐国华. 直升机旋翼空气动力学的发展[J]. 南京航空航天大学学报, 2001, 33(3):203-211. WANG S C, XU G H. Development of helicopter rotor aerodynamics[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2001, 33(3):203-211(in Chinese).
[25] ANDERSON J D. Fundamentals of aerodynamics[M]. New York:McGraw-Hill, 1984:1-24.
[26] CARR L W. Progress in analysis and prediction of dynamic stall[J]. Journal of Aircraft, 1988, 25(1):6-17.
[27] KARIM M A, ACHARYA M. Suppression of dynamic-stall vortices over pitching airfoils by leading-edge suction[J]. AIAA Journal, 1994, 32(8):1647-1655.
[28] GHARALI K, JOHNSON D A. PIV-based load investigation in dynamic stall for different reduced frequencies[J]. Experiments in Fluids, 2014, 55(8):1803.
[29] LEISHMAN J G. Dynamic stall experiments on the NACA 23012 aerofoil[J]. Experiments in Fluids, 1990, 9(1-2):49-58.
[30] GUPTA S, LEISHMAN J G. Dynamic stall modelling of the S809 aerofoil and comparison with experiments[J]. Wind Energy, 2010, 9(6):521-547.
[31] AKBARI M H, PRICE S J. Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method[J]. Journal of Fluids & Structures, 2003, 17(6):855-874.
[32] JUMPER E J, SCHRECK S J, DIMMICK R L. Lift-curve characteristics for an airfoil pitching at constant rate[J]. Journal of Aircraft, 1987, 24(10):680-687.
[33] GREGOREK G M, HOFFMANN M J, RAMSAY R R, et al. A study of pitch oscillation and roughness on airfoils used for horizontal axis wind turbines:NREL/TP-442-7386[R]. Golden:National Renewable Energy Lab, 1995.
[34] WANG F, CUI J Q. Flight dynamics modeling of coaxial rotorcraft UAVs[M]. Berlin:Springer, 2015:1217-1256.
[35] BOHL D G, KOOCHESFAHANI M M. MTV measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency[J]. Journal of Fluid Mechanics, 2009, 620:63-88.
[36] RIVAL D, TROPEA C. Characteristics of pitching and plunging airfoils under dynamic-stall conditions[J]. Journal of Aircraft, 2010, 47(1):80-86.
[37] SCHRECK S J, HELIN H E. Unsteady vortex dynamics and surface pressure topologies on a finite pitching wing[J]. Journal of Aircraft, 1994, 31(4):899-907.
[38] CHOUDHRY A, LEKNYS R, ARJOMANDI M, et al. An insight into the dynamic stall lift characteristics[J]. Experimental Thermal and Fluid Science, 2014, 58:188-208.
[39] SHENG W, GALBRAITH R A, COTON F N. A modified dynamic stall model for low Mach numbers[J]. Journal of Solar Energy Engineering, 2007, 130(3):031013.
[40] 赵国庆. 直升机旋翼非定常动态失速的CFD模拟及其主动流动控制研究[D]. 南京:南京航空航天大学, 2015:58-63. ZHAO G Q. CFD simulation of unsteady dynamic stall of helicopter rotor and active flow control[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:58-63(in Chinese).
[41] 上官云信, 周瑞兴, 郗忠祥, 等. 折算频率对翼型动态升力特性影响的初步研究[J].实验力学, 1997, 12(3):457-461. SHANGGUAN Y X, ZHOU R X, XI Z X, et al. Effect of reduced frequency on airfoil dynamic lift characteristics[J]. Journal of Experimental Mechanics, 1997, 12(3):457-461(in Chinese).
[42] 张瑞民, 赵俊波, 郭少杰. 翼型动态特性数值模拟及其影响因素分析[J]. 航空计算技术, 2016, 46(4):75-77. ZHANG R M, ZHAO J B, GUO S J. Numerical simulation of airfoil dynamic characteristics and analysis of influencing factors[J]. Aeronautical Computing Technique, 2016, 46(4):75-77(in Chinese).
[43] CHOUDHURI P G, KNIGHT D D. Effects of compressibility, pitch rate and reynolds number on unsteady incipient leading-edge boundary layer separation over a pitching airfoil[J]. Journal of Fluid Mechanics, 2006, 308(1):195-217.
[44] GERONTAKOS P, LEE T. PIV study of flow around unsteady airfoil with dynamic trailing-edge flap deflection[J]. Experiments in Fluids, 2008, 45(6):955-972.
[45] ROBINSON M, WISSLER J. Pitch rate and reynolds number effects on a pitching rectangular wing[C]//6th Applied Aerodynamics Conference, 1988:428-438.
[46] ZHANG X, SCHLVTER J U. Numerical study of the influence of the Reynolds-number on the lift created by a leading edge vortex[J]. Physics of Fluids, 2012, 24(6):1-10.
[47] OI M V, BERNAL L, KANG C K, et al. Shallow and deep dynamic stall for flapping low reynolds number airfoils[J]. Experiments in Fluids, 2009, 46(5):883-901.
[48] RAMSAY R R, HOFFMAN M J, GREGOREK G M. Effects of grit roughness and pitch oscillations on the S801 airfoil:NREL/TP-442-7817[R]. Columbus:The Ohio State University, 1996.
[49] YAN H. Computational modelling of solidity effects on blade elements with an airfoil profile for wind turbines[C]//North American Wind Energy Academy 2015 Symposium. Blacksburg:Virginia Tech, 2015:1-20.
[50] AMIRALAEI M R, ALIGHANBARI H, HASHEMI S M. An investigation into the effects of unsteady parameters on the aerodynamics of a low Reynolds number pitching airfoil[J]. Journal of Fluids & Structures, 2010, 26(6):979-993.
[51] HANSEN K L, KELSO R M, DALLY B B. Performance variations of leading-edge tubercles for distinct airfoil profiles[J]. AIAA Journal, 2011, 49(1):185-194.
[52] 夏玉顺, 郗忠祥, 周瑞兴, 等. NACA 0012翼型动态失速特性和测压方法的研究[J]. 航空学报, 1996, 17(7):25-30. XIA Y S, XI Z X, ZHOU R X, et al. Study on NACA 0012 airfoil dynamic stall characteristics and pressure measurement methods[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(7):25-30(in Chinese).
[53] 杜标, 李雪斌, 王龙, 等. 不同风速下风力机动态特性研究[J].制造业自动化, 2017, 39(12):86-89, 94. DU B, LI X B, WANG L, et al. Dynamic characteristics of wind turbine under different wind speeds[J]. Manufacturing Automation, 2017, 39(12):86-89, 94(in Chinese).
[54] CARR L W, MCALISTER K W, MCCROSKEY W J. Analysis of the development of dynamic stall based on oscillating airfoil experiments:NASA TND-8382[R]. Washington, D.C.:NASA, 1977.
[55] EKATERINARIS J A, CHANDRASEKHARA M S, PLATZER M F. Recent development in dynamic stall measurements computations and control:AIAA-2005-1296[R]. Reston:AIAA, 2005.
[56] CHANDRASEKHARA M S, WILDER M C, CARR L W. Compressible dynamic stall control:A comparison of different approaches:AIAA-1999-3122[R]. Reston:AIAA, 1999.
[57] 许和勇, 邢世龙, 叶正寅, 等. 基于充气前缘技术的旋翼翼型动态失速抑制[J]. 航空学报, 2017, 38(6):120799. XU H Y, XING S L, YE Z Y, et al. Dynamic stall suppression of rotor airfoil based on aerated leading edge technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120799(in Chinese).
[58] MCCROSKEY W J, MCALISTER K W, CARR L W, et al. Dynamic stall on advanced airfoil sections[J]. Journal of the American Helicopter Society, 1980, 26(3):40-50.
[59] VISBAL M R. Dynamic stall of a constant-rate pitching airfoil[J]. Journal of Aircraft, 1990, 27(5):400-407.
[60] CHANDRASEKHARA M S, CARR L W. Flow visualization studies of the Mach number effects on the dynamic stall of an oscillating airfoil[J]. Journal of Aircraft, 1990, 27(6):516-522.
[61] LⅡVA J. Unsteady aerodynamic and stall effects on helicopter rotor blade airfoil sections[C]//Aerospace Sciences Meeting, 1968:58-68.
[62] SHENG W, GALBRAITH R A M D, COTON F N. A new stall-onset criterion for low speed dynamic-stall[J]. Journal of Solar Energy Engineering, 2006, 128(4):461-471.
[63] LEISHMAN J G. Principles of helicopter aerodynamics[M]. Cambridge:Cambridge University Press, 2006:24-39.
[64] MULLENERS K, RAFFEL M. The onset of dynamic stall revisited[J]. Experiments in Fluids, 2011, 52(3):779-793.
[65] 王友进, 闫超, 周涛. 不同厚度翼型DSV运动数值研究[J]. 北京航空航天大学学报, 2006, 32(2):153-157. WANG Y J, YAN C, ZHOU T. Numerical study on DSV motion of airfoil with different thickness[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(2):153-157(in Chinese).
[66] 冉景洪, 刘子强, 白鹏. 相对弯度对低雷诺数流动中翼型动态气动力特性的影响[J]. 计算力学学报, 2010, 27(1):88-94. RAN J H, LIU Z Q, BAI P. Influence of relative curvature on aerodynamic characteristics of airfoil in low Reynolds number flows[J]. Chinese Journal of Computational Mechanics, 2010, 27(1):88-94(in Chinese).
[67] LORBER P F, CARTA F O, COVINO JR A F. An oscillating three-dimensional wing experiment:Compressibility, sweep, rate, waveform, and geometry effects on unsteady separation and dynamic stall[R]. East Hartford:United Technologies Research Center, 1992.
[68] PIZIALI R. An experimental investigation of 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall[C]//NASA Technical Memorandum 4632. Washington, D.C.:NASA, 1993:17-31.
[69] SPENTZOS A, BARAKOS G, BADCOCK K, et al. Investigation of three-dimensional dynamic stall using computational fluid dynamics[J]. AIAA Journal, 2005, 43(5):1023-1033.
[70] VISBAL M, YILMAZ T O, ROCKWELL D. Three-dimensional vortex formation on a heaving low-aspect-ratio wing:Computations and experiments[J]. Journal of Fluids & Structures, 2013, 38(3):58-76.
[71] GADELHAK M, HO C M. Unsteady vertical flow around three-dimensional lifting surfaces[J]. AIAA Journal, 1986, 24(5):713-721.
[72] TAN C M, CARR L W. The AFDD international dynamic stall workshop on correction of dynamic stall models with 3-D dynamic stall data:NASA TM 110375[R]. Washington, D.C.:NASA, 1996.
[73] 史志伟, 明晓, 王同光. 非定常自由来流对二维翼型气动特性的影响研究[J]. 空气动力学学报, 2008, 26(4):76-81, 91. SHI Z W, MING X, WANG T G. The effects of unsteady free stream on the static and pitching airfoils[J]. Acta Aerodynamica Sinica, 2008, 26(4):76-81, 91(in Chinese).
[74] HIRD K, FRANKHOUSER M W, GREGORY J W, et al. Compressible dynamic stall of an SSC-A09 airfoil subjected to coupled pitch and freestream mach oscillations[C]//70th Annual Forum of the American Helicopter Society, 2014:3049-3061.
[75] MARTIN P B, WILSON J S, BERRY J D, et al. Passive control of compressible dynamic stall:AIAA-2008-7506[R]. Reston:AIAA, 2008.
[76] HEINE B, MULLENERS K, JOUBERT G, et al. Dynamic stall control by passive disturbance generators:AIAA-2011-3371[R]. Reston:AIAA, 2011.
[77] 王元元, 张彬乾. Gurney襟翼改善翼型动态失速特性研究[J]. 飞行力学, 2010, 28(4):5-8. WANG Y Y, ZHANG B Q. Study on Gurney flaps improving airfoil dynamic stall characteristics[J]. Flight Dynamics, 2010, 28(4):5-8(in Chinese).
[78] 张仕栋. 波状前缘翼动态失速控制数值研究[D]. 上海:上海交通大学, 2015:3-24. ZHANG S D. Numerical study on dynamic stall control of wavy leading edge wing[D]. Shanghai:Shanghai Jiao Tong University, 2015:3-24(in Chinese).
[79] JOO W, LEE B, YEE K, et al. Combining passive control method for dynamic stall control[J]. Journal of Aircraft, 2006, 43(4):1120-1128.
[80] CHANDRASEKHARA M S, MARTIN P B, TUNG C. Compressible dynamic stall performance of a variable droop leading edge airfoil with a gurney flap[J]. Journal of the American Helicopter Society, 2008, 53(1):18-25.
[81] MARTIN P, WILSON J, BERRY J, et al. Passive control of compressible dynamic stall:AIAA-2008-7506[R]. Reston:AIAA, 2008.
[82] MAI H, DIETZ G, GEISSLER W, et al. Dynamic stall control by leading-edge vortex generators[J]. Journal of the American Helicopter Society, 2008, 53(1):26-36.
[83] PAPE A L, COSTES M, RICHEZ F, et al. Dynamic stall control using deployable leading-edge vortex generators[J]. AIAA Journal, 2012, 50(10):2135-2145.
[84] STORMS B L, ROSS J C. Experimental study of lift-enhancing tabs on a two-element airfoil[J]. Journal of Aircraft, 2015, 32(5):1072-1078.
[85] FRIC T F, ROSHKO A. Vortical structure in the wake of a transverse jet[J]. Journal of Fluid Mechanics, 1994, 279(1):1-47.
[86] SINGH C, PEAKE D J, KOKKALIS A, et al. Control of rotorcraft retreating blade stall using air-jet vortex generators[J]. Journal of Aircraft, 2006, 43(4):1169-1176.
[87] NIU J, LEI J, LU T. Numerical research on the effect of variable droop leading-edge on oscillating NACA 0012 airfoil dynamic stall[J]. Aerospace Science and Technology, 2018, 72(1):476-485.
[88] 王建涛. 直升机旋翼前缘下垂控制动态失速数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2008:26-55. WANG J T. Numerical simulation of helicopter rotor droop control dynamic stall[D]. Mianyang:China Aerodynamics Research and Development Center, 2008:26-55(in Chinese).
[89] 黄勇, 牟斌, 陈作斌, 等. 翼型动态失速的变下垂前缘控制数值模拟[J]. 航空动力学报, 2008, 23(3):496-504. HUANG Y, MOU B, CHEN Z B, et al. Numerical simulation of variable droop leading edge control of airfoil dynamic stall[J]. Journal of Aerospace Power, 2008, 23(3):496-504(in Chinese).
[90] ZHAO G Q, ZHAO Q J. Dynamic stall control optimization of rotor airfoil via variable droop leading-edge[J]. Aerospace Science and Technology, 2015, 43(6):406-414.
[91] GEISSLERA W, VAN DER WALL B G. Dynamic stall control on flapping wing airfoils[J]. Aerospace Science and Technology, 2017, 62(3):1-10.
[92] CHANDRASEKHARA M S, WILDER M C, CARR L W. Unsteady stall control using dynamically deforming airfoils[J]. AIAA Journal, 1998, 36(10):1792-1800.
[93] MEHMET S, LAKSHMI N, SANKAR M S, et al. Dynamic stall alleviation using a deformable leading edge concept-a numerical study[J]. Journal of Aircraft, 2003, 40(1):77-85.
[94] 卢天宇, 吴小胜. 翼型前缘变形对动态失速效应影响的数值计算[J]. 航空学报, 2013, 35(4):986-994. LU T Y, WU X S. Numerical calculation effects of deforming leading edge on airfoil dynamic stall control[J]. Acta Aeronautica et Astronautica Sinica, 2013, 35(4):986-994(in Chinese).
[95] GEISSLER W, DIETZ G, MAI H, et al. Dynamic stall control investigation on a full size chord blade section[C]//30th European Rotorcraft Forum. Cologne:German Aerospace Center (DLR), 2004:1-11.
[96] GEISSLER W, DIETZ G, MAI H. Dynamic stall on a supercritical airfoil[J]. Aerospace Science and Technology, 2005, 9(5):390-399.
[97] CHANDRASEKHARA M S. A review of compressible dynamic stall control principles and methods[C]//Proceedings of the Tenth Asian Congress of Fluid Mechanics, 2004:1-6.
[98] FESZTY D, GILLIES E A, VEZZA M. Alleviation of airfoil dynamic stall moments via trailing-edge-flap flow control[J]. AIAA Journal, 2004, 42(1):17-25.
[99] 王荣, 夏品奇. 多片后缘小翼对直升机旋翼桨叶动态失速及桨毂振动载荷的控制[J]. 航空学报, 2013, 34(5):1083-1091. WANG R, XIA P Q. Control of dynamic stall of helicopter rotor blade and vibration load of rotor hub with multiple trailing edge winglets[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1083-1091(in Chinese).
[100] 马奕扬, 招启军,赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报, 2017, 38(3):120312. MA Y Y, ZHAO Q J, ZHAO G Q. Analysis of rotor airfoil dynamic stall control based on trailing edge airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120312(in Chinese).
[101] GERONTAKOS P, LEE T. Dynamic stall flow control via a trailing-edge flap[J]. AIAA Journal, 2006, 44(3):469-480.
[102] LEE T, SU Y Y. Unsteady airfoil with a harmonically deflected trailing-edge flap[J]. Journal of Fluids and Structures, 2011, 27(8):1411-1424.
[103] 刘洋, 向锦武. 后缘襟翼对直升机旋翼翼型动态失速特性的影响[J]. 航空学报, 2013, 34(5):1028-1035. LIU Y, XIANG J W. Influence of trailing edge flaps on dynamic stall characteristics of helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1028-1035(in Chinese).
[104] JOO W, LEE B S, YEE K, et al. Combining passive control method for dynamic stall control[J]. Journal of Aircraft, 1971, 43(4):1120-1128.
[105] EKATERINARIS J A. Numerical investigations of dynamic stall active control for incompressible and compressible flows[J]. Journal of Aircraft, 2002, 39(39):71-78.
[106] MULLER-VAHL H F, STRANGFELD C, NAYERI C N, et al. Control of thick airfoil deep dynamic stall using steady blowing[J]. AIAA Journal, 2015, 53(2):277-295.
[107] BARLAS T K, VAN KUIK G A M. Review of state of the art in smart rotor control research for wind turbines[J]. Progress in Aerospace Sciences, 2010, 46(1):1-27.
[108] STRAUB F K. A feasibility study of using smart materials for rotor control[J]. Smart Materials and Structures, 1996, 5(1):1-10.
[109] WYGNANSKY I, GREENBLATT D, SEIFERT A. Airfoil with dynamic stall control by oscillatory forcing:European, 98304902.4[P]. 1998.
[110] TANAKA M, OSAKO T, SHIODA K, et al. Vortex generating apparatus and method:European, 14153570.8[P]. 2014.
[111] 许和勇, 邢世龙, 叶正寅. 一种直升机旋翼动态失速主动流动控制装置及方法:中国, ZL201610363864.9[P]. 2018-04-17. XU H Y, XING S L, YE Z Y. An active flow control device for rotor dynamic stall of helicopter and a method:China, ZL201610363864.9[P]. 2018-04-17(in Chinese).
[112] 许和勇, 杨慧强, 乔晨亮, 等. 用于直升机旋翼叶片的联合射流控制装置及其控制方法:中国, ZL201610624036.6[P], 2018-03-16. XU H Y, YANG H Q, QIAO C L, et al. Joint jet control device for helicopter rotor blade and its control method:China, ZL201610624036.6[P], 2018-03-16(in Chinese).
[113] 赵光银, 梁华, 吴云, 等. 旋翼桨叶动态失速等离子体流动控制装置和方法:中国, ZL201910495450.5[P]. 2019-05-28. ZHAO G Y, LIANG H, WU Y, et al. Plasma flow control device and method for rotor blade dynamic stall:China, ZL201910495450.5[P]. 2019-05-28(in Chinese).
[114] ADERA A, RAMAKRISHNAN S. Review on dynamic stall control in airfoils[C]//ICAST 2018. Berlin:Springer, 2018:380-400.
[115] 张鑫, 黄勇, 王勋年, 等. 超临界机翼介质阻挡放电等离子体流动控制[J]. 航空学报, 2016, 37(6):1733-1742. ZHANG X, HUANG Y, WANG X N, et al. Flow control of dielectric barrier discharge plasma in supercritical airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1733-1742(in Chinese).
[116] WANG J, LI Y H, XING F. Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow[J]. Journal of Applied Physics, 2009, 106(7):073307.
[117] 杨瑞, 罗振兵, 夏智勋, 等. 高超声速导弹等离子体合成射流控制数值研究[J].航空学报, 2016, 37(6):1722-1732. YANG R, LUO Z B, XIA Z X, et al. Numerical study on plasma synthesis jet control of hypersonic missile[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1722-1732(in Chinese).
[118] 吴云, 李应红. 等离子体流动控制研究进展与发展展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Research progress and prospect of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[119] 李应红, 梁华, 马清源, 等. 脉冲等离子体气动激励抑制翼型吸力面流动分离的实验[J]. 航空学报, 2008, 29(6):1429-1435. LI Y H, LIANG H, MA Q Y, et al. Experimental study on flow separation of airfoil suction surface under pulsed plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1429-1435(in Chinese).
[120] 周朋辉, 田希晖, 车学科, 等. 不同压力下微秒脉冲表面介质阻挡放电流场实验[J]. 航空动力学报, 2013, 28(12):2691-2697. ZHOU P H, TIAN X H, CHE X K, et al. Experimental study on surface dielectric barrier discharge current field of microsecond pulse under different pressures[J]. Journal of Aerospace Power, 2013, 28(12):2691-2697(in Chinese).
[121] ROUPASSOV D V, NIKIPELOV A A, NUDNOVA M M, et al. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal, 2009, 47(1):168-185.
[122] DEDRICK J, IM S, CAPPELLI M A, et al. Surface discharge plasma actuator driven by a pulsed 13.56 MHz-5 kHz voltage waveform[J]. Journal of Physics D:Applied Physics, 2013, 46(40):405201.
[123] 梁华, 李应红, 宋慧敏, 等. 多相等离子体气动激励抑制翼型失速分离的实验[J]. 航空动力学报, 2011, 26(4):867-873. LIANG H, LI Y H, SONG H M, et al. Experimental study on multi-phase plasma aerodynamic actuation to suppress airfoil stall separation[J]. Journal of Aerospace Power, 2011, 26(4):867-873(in Chinese).
[124] 梁华, 李应红, 吴云, 等. 等离子体气动激励的数值仿真[J]. 高电压技术, 2009, 35(5):1071-1076. LIANG H, LI Y H, WU Y, et al. Numerical simulation of plasma aerodynamic actuation[J]. High Voltage Engineering, 2009, 35(5):1071-1076(in Chinese).
[125] 车学科, 聂万胜, 周朋辉, 等. 亚微秒脉冲表面介质阻挡放电等离子体诱导连续漩涡的研究[J]. 物理学报, 2013, 62(22):224702. CHE X K, NIE W S, ZHOU P H, et al. Study on continuous vortex induced by submicrosecond pulsed surface dielectric barrier discharge plasma[J]. Acta Physica Sinica, 2013, 62(22):224702(in Chinese).
[126] 宋慧敏, 吴韦韦, 崔巍, 等. 射频放电等离子体气动激励特性的实验研究[J]. 高电压技术, 2014, 40(7):2044-2048. SONG H M, WU W W, CUI W, et al. Experimental study on aerodynamic actuation characteristics of RF discharge plasma[J]. High Voltage Engineering, 2014, 40(7):2044-2048(in Chinese).
[127] 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31):3060-3068. LI Y H, WU Y, LIANG H, et al. Principle of plasma impingement flow control for improving the ability of inhibiting flow separation[J]. Chinese Science Bulletin, 2010, 55(31):3060-3068(in Chinese).
[128] TRAUB L W, MILLER A, REDINIOTIS O. Effects of synthetic jet actuation on a ramping NACA 0015 airfoil[J]. Journal of Aircraft, 2004, 41(5):1153-1162.
[129] RETHMEL C, LITTLE J, TAKASHIMA K, et al. Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators:AIAA-2011-487[R]. Reston:AIAA, 2011.
[130] 倪芳原, 史志伟, 杜海. 纳秒脉冲等离子体激励器用于圆柱高速流动控制的数值模拟[J]. 航空学报, 2014, 34(3):657-665. NI F Y, SHI Z W, DU H. Numerical simulation of high-speed cylinder flow control with nanosecond pulsed plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2014, 34(3):657-665(in Chinese).
[131] NISHIHARA M, TAKASHIMA K, RICH J W, et al. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge[J]. Physics of Fluids, 2011, 23(6):066101.
[132] WU Y, LI Y, LIANG H, et al. Nanosecond pulsed discharge plasma actuation:Characteristics and flow control performance:AIAA-2014-2118[R]. Reston:AIAA, 2014.
[133] 宋科, 杨旭东, 乔志德. 翼型动态失速DBD等离子体流动控制的数值模拟研究[J]. 航空计算技术, 2010, 40(3):5-8, 17. SONG K,YANG X D, QIAO Z D, et al. Flow control of airfoil dynamic stall based on DBD plasma actuators[J]. Aeronautical Computing Technique, 2010, 40(3):5-8, 17(in Chinese).
[134] POST M L, CORKE T C. Separation control on high angle of attack airfoil using plasma actuators[J]. AIAA Journal, 2012, 42(11):2177-2184.
[135] FRANKHOUSER M, HIRD K, NAIGLE S, et al. Nanosecond dielectric barrier discharge plasma actuator flow control of compressible dynamic stall:AIAA-2013-2341[R]. Reston:AIAA, 2013.
[136] LOMBARDI A J, BOWLES P O, CORKE T C. Closed-loop dynamic stall control using a plasma actuator[J]. AIAA Journal, 2013, 51(5):1130-1141.
[137] GLAZ B, DINAVAHI S P G, GAITONDE D V. Nanosecond pulsed plasma actuation effects on aerodynamic damping and implications for aeroelastic stability in the post-stall regime:AIAA-2012-1482[R]. Reston:AIAA, 2012.
[138] MITSUO K, WATANABE S, ATOBE T, et al. Lift enhancement of a pitching airfoil in dynamic stall by DBD plasma actuators:AIAA-2013-1119[R]. Reston:AIAA, 2013.
[139] POST M L, CORKE T C. Separation control using plasmas actuators-stationary and oscillating airfoils:AIAA-2004-0841[R]. Reston:AIAA, 2004.
[140] STARIKOVSKIY A, PERSIKOV N, MILES R. Helicopter lift force increase in hover mode by NS-SDBD plasma actuators:AIAA-2018-0936[R]. Reston:AIAA, 2018.
[141] STARIKOVSKIY A, MEEHAN K, MILES R. Dynamic stall control by NS SDBD actuator:AIAA-2018-0681[R]. Reston:AIAA, 2018.
[142] SEKIMOTO S, FUKUMOTO H, SHIMOMURA S, et al. Experimental analysis of burst actuation for separation control around a pitching NACA0015 airfoil using a DBD plasma actuator at low reynolds number:AIAA-2018-1551[R]. Reston:AIAA, 2018.