The distribution of flow field parameters of inward turning inlet is uneven. In order to improve the aerodynamic performances of inward turning inlet, a numerical simulation method is employed to study the flow field reconstruction of inward inlet based on the configuration. The results show that the centerline of the flow field reconstruction surface largely influences the flow field structure and flow characteristics of inlet. Under the given offset distance/length and slope at the end of centerline, the aerodynamic performances and the distribution of flow field parameters of the inlet at appropriate initial angle of centerline are improved. Compared with the basic inward turning inlet, at centerline initial angle 10°, the total pressure recovery at outlet and the back pressure capability of the inlet improved by 33.7% and 26.4%, and the self-starting Mach number decreased by 1.1. As the initial angle of the centerline increases, the streamwise vortex induced by the shock/sidewall boundary layer interaction weakens and the trajectory of streamwise vortex shifts to the cowl side from ramp, and the migration of flow with low total pressure to cowl on both sides enhances. Within the research scope, as the initial angle of centerline increases, the total pressure recovery of the outlet increases firstly and then decreases, and the self-starting Mach number decreases firstly and then remains constant.
[1] BILLIG F S, JACOBSEN L S. Comparison of planar and axisymmetric flowpaths for hydrogen fueled space access vehicles:AIAA-2003-4407[R]. Reston, VA:AIAA, 2003.
[2] ZANCHETTA M, CAIN T. An axisymmetric internal compression inlet:AIAA-1998-1525[R]. Reston, VA:AIAA, 1998.
[3] GOLDFELD M, NESTOULIA R. Numerical and experimental studies of 3D hypersonic inlet[J]. Jornal of Thermal Science, 2002, 11(3):198-206.
[4] BARKMEYER D, STARKEY R, LEWIS M. Inverse waverider design for inward turning inlets[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, VA:AIAA, 2005.
[5] SMART M K,TREXLER C A.Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 2004, 20(2):288-293.
[6] SMART M K, WHITE J A. Computational investigation of the performance and back-pressure limits of a hypersonic inlet[C]//AIAA Aerospace Sciences Meeting & Exhibit. Reston, VA:AIAA, 2002.
[7] SMART M K. Experimental testing of a hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 2001, 17(2):276-283.
[8] SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3):408-416.
[9] 贺旭照, 周正, 倪鸿礼. 密切内锥乘波前体进气道一体化设计和性能分析[J]. 推进技术, 2012, 33(4):510-515. HE X Z, ZHOU Z, NI H L. Integrated design and performance analysis of inner cone wave-riding precursor inlet[J]. Journal of Propulsion Technology, 2012, 33(4):510-515 (in Chinese).
[10] YOU Y C, LIANG D W, HUANG G P. Cross section controllable hypersonic inlet design using streamline-tracing and osculating axisymmetric concepts[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, VA:AIAA, 2007.
[11] YOU Y C,LIANG D W.Design concept of three-dimensional section controllable internal waverider hypersonic inlet[J]. Science in China, 2009, 52(7):2017-2028.
[12] YOU Y C, LIANG D W, GUO R W. High enthalpy wind tunnel tests of three-dimensional section controllable internal waverider hypersonic inlet[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2009.
[13] 尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道[J]. 中国科学:技术科学,2009(8):1483-1494. YOU Y C,LIANG D W.Hypersonic inlet with three dimensional variable cross-section based on internal riding wave concept[J]. Science China:Technological Science,2009(8):1483-1494 (in Chinese).
[14] XIAO Y B, YUE L J, CHEN L C, et al. Iso-contraction-ratio methodology for the design of hypersonic inward turning inlets with shape transition[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston, VA:AIAA, 2012.
[15] MATTHEWS A J, JONES T V. Design and test of a modular waverider hypersonic intake[J]. Journal of Propulsion and Power, 2006, 22(4):913-920.
[16] NAN X J, ZHANG K Y. Numerical and experimental investigation on hypersonic inward turning inlets with basic flowfield using arc tangent curve law of pressure rise[C]//AIAA International Space Planes & Hypersonic Systems & Technologies Conference. Reston, VA:AIAA, 2011.
[17] 李永洲,张堃元,南向军.基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报, 2012, 27(11):2484-2491. LI Y Z, ZHANG K Y, NAN X J. Hypersonic internal contraction inlet design based on the controllable concept of Mach number distribution law[J]. Journal of Aerospace Power, 2012, 27(11):2484-2491 (in Chinese).
[18] QIAO W Y, YU A Y, GAO W, et al. Design method with controllable velocity direction at throat for inward-turning inlets[J]. Chinese Journal of Aeronautics, 2019, 32(6):1403-1415.
[19] 乔文友, 黄国平, 夏晨, 等. 发展用于高速飞行器前体/进气道匹配设计的逆特征线法[J]. 航空动力学报, 2014, 29(6):1444-1452. QIAO W Y, HUANG G P, XIA C, et al. Development of inverse characteristic method for precursor/inlet matching design of high speed aircraft[J].Journal of Aerospace Power, 2014, 29(6):1444-1452 (in Chinese).
[20] 王卫星, 郭荣伟. 圆形出口内转式进气道流动特征[J].航空学报, 2016, 37(2):533-544. WANG W X, GUO R W. Flow characteristics of inner rotary inlet at circular outlet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):533-544 (in Chinese).
[21] 王卫星, 顾强, 郭荣伟. 内转式进气道流动控制研究[J]. 推进技术, 2017, 38(5):6-12. WANG W X, GU Q, GUO R W. A study on the flow control of inward-rotating inlet[J]. Journal of Propulsion Technology, 2017, 38(5):6-12 (in Chinese).
[22] 南向军, 张堃元, 金志光. 采用新型基准流场的高超内收缩进气道试验研究[J]. 航空学报, 2014, 35(1):90-96. NAN X J, ZHANG K Y, JIN Z G. Hypersonic internal contraction inlet test using a new type of basic flow field[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):90-96 (in Chinese).
[23] 王德鹏, 田方超, 张启帆, 等. 进口形状对内转式进气道的起动特性影响[J]. 航空动力学报, 2015, 30(6):1400-1406. WANG D P, TIAN F C, ZHANG Q F, et al. Effect of inlet shape on starting characteristics of inward-turning inlet[J]. Journal of Aerospace Power, 2015, 30(6):1400-1406 (in Chinese).
[24] 田方超, 张启帆, 谭慧俊. 内收缩进气道不起动非定常流动研究[C]//高超声速冲压发动机内外流耦合流动研讨会, 2013. TIAN F C, ZHANG Q F, TAN H J. Study on unsteady flow of internal contraction inlet without starting[C]//Hypersonic Ram Internal and External Coupled Flow Seminar, 2013 (in Chinese).
[25] JACOBSEN L S, TAM C J, BEHDADNIA R, et al. Starting and operation of a streamline-traced busemann inlet at Mach 4[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, VA:AIAA, 2006.
[26] ANDREAS K F, ALI G.Experimental investigation of the starting behavior of a three-dimensional SCRamjet intake with a movable cowl and exchangeable cowl geometry at different Mach numbers[J]. 19th AIAA International Space Planes and Hypersonic and Systems and Technologies Conference. Reston, VA:AIAA, 2014.
[27] 朱婷, 王卫星. 唇罩内型面对内转式进气道流动特性影响研究[J]. 推进技术, 2019, 40(10):2226-2234. ZHU T, WANG W X. Study on the influence of inner lip mask on inward-turning inlet flow characteristics[J]. Journal of Propulsion Technology, 2019, 40(10):2226-2234 (in Chinese).
[28] DOLLING D S MCCLURE W B. Flowfield scaling in sharp fin-induced shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 1985, 23(2):201-206.