Electronics and Electrical Engineering and Control

Dynamic reconfiguration method based on effectiveness for advanced fighter avionics system

  • ZHAO Changxiao ,
  • HE Feng ,
  • LI Hao ,
  • WANG Peng
Expand
  • 1. College of Airworthiness, Civil Aviation University of China, Tianjin 300300, China;
    2. Science and Technology on Electro-optic Control Laboratory, Luoyang 471009, China;
    3. School of Electronic Information Engineering, Beihang University, Beijing 100083, China;
    4. Key Laboratory of Civil Aircraft Airworthiness Technology, Civil Aviation University of China, Tianjin 300300, China

Received date: 2019-09-02

  Revised date: 2019-09-16

  Online published: 2019-11-20

Supported by

National Natural Science Foundation of China (U1933106); Aeronautical Science Foundation of China (20185167017)

Abstract

To meet the requirement of the future advanced fighter’s suppressive capability to the enemy in the whole combat process, the relationship between combat mission and support capability of avionics system is analyzed and the relationship matrix between combat mission-avionics power-resource requirement is established. The dynamic reconfiguration strategy and reconfiguration process of avionics system for different combat scenarios are designed aiming at maximizing the overall effectiveness and flight safety of avionics system in flight phase. Through numerical analysis, this paper compares the performance of dynamic reconfiguration avionics system with static configuration avionics system in different battle zone boundaries. The results show that dynamic reconfiguration can effectively improve the operational effectiveness of fighter aircraft at all stages and enhance the stage advantage with limited resources.

Cite this article

ZHAO Changxiao , HE Feng , LI Hao , WANG Peng . Dynamic reconfiguration method based on effectiveness for advanced fighter avionics system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(6) : 523416 -523416 . DOI: 10.7527/S1000-6893.2019.23416

References

[1] GONZALES D. Network-centric warfare[J]. Betascript Publishing, 2010, 43(6):55-61.
[2] 王国庆, 谷青范, 王淼, 等. 新一代综合化航空电子系统构架技术研究[J]. 航空学报, 2014, 35(6):1473-1486. WANG G Q, GU Q F, WANG M, et al. Research on the architecture technology for new generation integrated avionics system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1473-1486(in Chinese).
[3] 王琳. 飞行器射频隐身技术及发展思路[J]. 电讯技术, 2013, 53(8):973-976. WANG L. RF stealth technology and development thoughts on aviation platform[J]. Telecommunication Engineering, 2013, 53(8):973-976(in Chinese).
[4] 蒲小勃. 现代航空电子系统与综合[M]. 北京:航空工业出版社, 2013. PU X B. Modern avionics system and integration[M]. Beijing:Aviation Industry Press, 2013(in Chinese).
[5] MAIRAJ A. Preferred choice for resource efficiency:Integrated modular avionics versus federated avionics[C]//2015 IEEE Aerospace Conference. Piscataway:IEEE Press, 2015:1-6.
[6] FU J, WANG S, LIU B. An original approach to constructing test model for IMA blueprints[C]//2017 Second International Conference on Reliability Systems Engineering (ICRSE), 2017:1-6.
[7] SOOKWANG R. Joint avionics reconfigurable virtual information system navy SBIR FY2015.2[EB/OL]. (2015-02-15)[2019-06-04]. https://www.navysbir.com/15_2/84.htm
[8] SIGNAL.Physical optics providing jarvis prototype[EB/OL]. (2018-06-11)[2019-06-04]. https://www.afcea.org/content/physical-optics-providing-jarvis-prototype-support.
[9] 熊华钢, 王中华. 先进航空电子综合技术[M]. 北京:国防工业出版社, 2009. XIONG H G, WANG Z H. Advanced integrated avionics technology[M]. Beijing:National Defence Industry Press, 2009(in Chinese).
[10] ZHOU T, XIONG H. Design of energy-efficient hierarchical scheduling for integrated modular avionics systems[J]. Chinese Journal of Aeronautics, 2012, 25(1):109-114.
[11] 赵露茜, 李峭, 林晚晴, 等. 基于随机网络演算的TTE网络时延分析[J]. 航空学报, 2016, 37(6):1953-1961. ZHAO L X, LI Q, LIN W Q, et al. Stochastic network calculus for analysis of latency on TTE thernet network[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1953-1961(in Chinese).
[12] 赵长啸, 何锋, 阎芳. 面向风险均衡的AFDX虚拟链路路径寻优算法[J]. 航空学报, 2018, 39(1):321435. ZHAO C X, HE F, YAN F. Path optimization algorithm for AFDX virtual link to balance the network risk[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):321435(in Chinese).
[13] RAYMER D P. Next generation attack fighter conceptual design study[J]. Aircraft Design, 1998, 1(1):43-49.
[14] MOIR I, SEABRIDGE A G. Military avionics systems[M]. New York:John Wiley & Sons, Ltd., 2006.
[15] GUILLAUMET T, FERON E, BAUFRETON P, et al. Task allocation of safety-critical applications on reconfigurable multi-core architectures[C]//Digital Avionics Systems Conference, 2017.
[16] WATKINS C B, WALTER R. Transitioning from federated avionics architectures to integrated modular avionics[C]//IEEE/AIAA Digital Avionics Systems Conference. Piscataway:IEEE Press, 2007.
[17] GASKA T, WATKIN C, CHEN Y. Integrated modular avionics-Past, present, and future[J]. IEEE Aerospace and Electronic Systems Magazine, 2015, 30(9):12-23.
[18] ZHAO C, YAN F, TIAN Y, et al. Safety issues caused by the integration of the IMA platform and AFDX[C]//Digital Avionics Systems Conference. Piscataway:IEEE Press, 2017
[19] DEROCHE E, SCHARBARG J L, FRABOUL C. Communication-aware scheduling on an IMA architecture:Invited paper[J]. ACM SIGBED Review, 2016, 13(3):23-24.
[20] 宋艳波, 许腾, 孙钧正. 基于任务的联合机动编队反舰作战效能模型[J]. 兵工自动化, 2018, 37(6):51-55. SONG Y B, XU T, SUN Y Z. Anti-ship combat effectiveness model of JTF based on mission[J]. Ordnance Industry Automation,2018, 37(6):51-55(in Chinese).
[21] ZHU Z, LEI Y L, SARJOUGHIAN H, et al. UML-based combat effectiveness simulation system modeling within MDE[J]. Electronic Technology & Information Science, 2019, 29(6):1180-1196.
[22] LEE Y H, KIM D, YOUNIS M, et al. Resource scheduling in dependable integrated modular avionics[C]//International Conference on Dependable Systems & Networks, 2000.
Outlines

/