Solid Mechanics and Vehicle Conceptual Design

Full-scale aircraft strength test technology of next generation fighter

  • WANG Yupeng ,
  • PEI Lianjie ,
  • LI Qiulong ,
  • ZHENG Jianjun ,
  • FENG Jianmin ,
  • WANG Fan
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC Aircraft Strength Research Institute, Xi'an 710065, China;
    3. Aviation Technology Key Laboratory of Full Scale Aircraft Sturcture Static and Fatigue Test, Xi'an 710065, China;
    4. AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610041, China

Received date: 2019-09-11

  Revised date: 2019-10-08

  Online published: 2019-11-14

Abstract

This paper introduced the full-scale aircraft ground strength test and its requirements and analyzed the new problems and challenges in the test. Through the top-level planning for the test, new design mode and advanced loading technology are adopted to develop the overall technical scheme from the aspects of test boundary conditions, integrated platform, power system, measurement and control, and damage detection and monitoring. A number of new technologies, such as full-hard single-side bidirectional loading technology, test comprehensive platform design technology, boundary condition simulation technology, and power system design technology, have been studied and applied, which have improved design efficiency, accelerated test implementation speed, and improved test safety and reliability. These new technologies of this project have been successfully applied in the full-scale aircraft static/fatigue tests. The results showed that the test systems are safe and reliable, indicating that the test requirements and expected objectives have been achieved. The technologies have made great progress in the full-scale aircraft ground strength test, and the results have provided a high reference value for subsequent tests.

Cite this article

WANG Yupeng , PEI Lianjie , LI Qiulong , ZHENG Jianjun , FENG Jianmin , WANG Fan . Full-scale aircraft strength test technology of next generation fighter[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(6) : 523482 -523482 . DOI: 10.7527/S1000-6893.2019.23482

References

[1] 中国人民解放军总装备部. GJB 67.9A-2008军用飞机结构强度规范——地面试验[S]. 北京:总装备部军标出版发行部, 2008. General Armament Department of the PLA. GJB 67.9A-2008 Military airplane structural strength specification-Part 9-Ground tests[S]. Beijing:General Armament Department Military Standard Publishing Department, 2008(in Chinese).
[2] 强宝平. 全尺寸飞机结构试验技术[J]. 航空科学技术, 2012(6):10-13. QIANG B P. Evaluation of full scale aircraft structure strength test technology[J]. Aeronautical Science & Technology, 2012(6):10-13(in Chinese).
[3] 中国飞机强度研究所. 航空结构强度技术[M]. 北京:航空工业出版社, 2013:357. Aircraft Strength Research Institute. Aircraft structure strength technology[M]. Beijing:Aviation Industry Press, 2013:357(in Chinese).
[4] 吴波,舒成辉.基于可靠性准则的飞机结构强度验证力法研究[J].航空科学技术,2016,27(3):41-45. WU B, SHU C H. Research on certification method for aircraft structural strength based on reliability criterion[J]. Aeronautical Science & Technology, 2016,27(3):41-45(in Chinese).
[5] 薛景川,薛铁军,郑妥仲.原苏联民航飞机耐久性和损伤容限设计与试验技术发展概况[J].航空学报,1993,14(3):A202-A204. XUE J C,XUE T J,ZHENG T Z. The general situation of design and test technique development on civil aircraft durability and damage tolerance of previous USSR[J]. Acta Aeronautica et Astronautic Sinica, 1993, 14(3):A202-A204(in Chinese).
[6] 范瑞娟,王新波,杨剑锋.通用飞机全尺寸疲劳试验验证技术[J].航空科学技术,2016, 27(6):57-61. FAN R J,WAND X B, YANG J F. Technique of the full-scale fatigue verification test for general aircraft[J]. Aeronautical Science & Technology, 2016, 27(6):57-61(in Chinese).
[7] 刘冰, 张赟,刘玮,等.基于误差控制的大展弦比机翼静强度试验载荷处理技术[J]. 科学技术与工程,2017,17(30):356-360. LIU B, ZHANG Y, LIU W, et al. Load process technology based on error control for static strength test of high-aspect ratio wing[J]. Science Technology and Engineering, 2017,17(30):356-360(in Chinese).
[8] 王正平, 韩鸿源. 飞机结构试验载荷演算方法研究[J]. 西北工业大学学报,1999, 17(4):649-652. WANG Z P, HAN H Y. A method for load calculation in aircraft structure test[J]. Journal of Northwestern Polytechnical University, 1999, 17(4):649-652(in Chinese).
[9] 刘亚龙, 王生楠, 刘海峰, 等. 基于MSC/PATRAN的飞机结构强度静力试验数据实时跟踪与处理系统开发[J]. 航空学报,2007, 28(1):84-89. LIU Y L, WANG S N, LIU H F, et al. Development of test data tracking, analyzing and processing system for aircraft structural strength based on MSC/PATRAN platform[J]. Acta Aeronautica et Astronautic Sinica, 2007, 28(1):84-89(in Chinese).
[10] 刘权良, 尹伟, 夏峰. 飞机结构静强度试验支持方案的确定[J]. 航空科学技术,2012(5):32-35. LIU Q L,YING W, XIA F, The determination of support scheme for aircraft static strength verification test[J]. Aeronautical Science & Technology, 2012(5):32-35(in Chinese).
[11] 王高利, 唐吉运. 全尺寸飞机结构试验约束点载荷误差分析及优化[J]. 工程与试验,2014, 54(2):42-46. WANG G L, TANG J Y. Error analysis & optimization for constraint point load of full scale aircraft test[J]. Engineering & Test, 2014, 54(2):42-46(in Chinese).
[12] 刘冰, 夏峰, 张建峰, 等. 全尺寸飞机静强度试验扣重技术研究[C]//第六届中国航空学会青年科技论坛论文集. 北京:航空工业出版社, 2014:425-429. LIU B, XIA F, ZHANG J F, et al. Research of weight deduct of static test ob full scale aircraft[C]//6th CSAA S & T Technique Youth. Beijing:Aviation Industry Press, 2014:425-429(in Chinese).
[13] SEEBACHER S,OSTEN W,BAUMBACH T,et al. The determination of material parameters of microcomponents using digital holography[J]. Optics and Lasers in Engineering, 2001,36(2):103-126.
[14] GUASTAVINO R, GORANSSON P. A 3D displacement measurement methodology for anisotropic porous cellular foam materials[J]. Polymer Testing, 2007,26(6):711-719.
[15] WU J, YUAN S, ZHOU G, et al. Design and evaluation of a wireless sensor network based aircraft strength testing system[J]. Sensors, 2009,9(6):4195-4210.
[16] KWEDER J, PANTHER C C, SMITH J E. Applications of circulation control, yesterday and today[J]. International Journal of Engineering, 2010, 4(5):411-429.
[17] ZHAO H W, DUAN S H,FENG J M. A preliminary study on application of closed-loop cross compensation control in accelerated fatigue testing[C]//33rd AIAA Aerodynamic Measurement Technology and Ground Testing Conference.Reston:AIAA, 2017.
[18] BOLLER C. Next generation structural health monitoring and its integration into aircraft design[J]. International Journal of Systems Science, 2000, 31(11):1333-1349.
[19] ZOU Y, TONG L, STEVEN G P. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures-A review[J]. Journal of Sound and Vibration, 2000, 230(2):357-378.
[20] 郭方宇, 袁慎芳, 鲍峤. 基于导波的飞机结构腐蚀损伤监测研究[J]. 航空制造技术,2018, 61(7):70-76. GUO F Y, YUAN S F, BAO Q. Research on corrosion damage monitoring of aircraft structure based on guided wave[J]. Aeronautical Manufacturing Technology, 2018, 61(7):70-76(in Chinese).
[21] 孙侠生, 肖迎春. 飞机结构健康监测技术的机遇与挑战[J]. 航空学报,2014,35(12):3199-3212. SUN X S, XIAO Y C. Opportunities and challenges of aircraft structural health monitoring[J]. Acta Aeronautica et Astronautic Sinica,2014,35(12):3199-3212(in Chinese).
[22] 马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报,2014,35(7):1787-1803. MA B Q,ZHOU Z G. Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries[J]. Acta Aeronautica et Astronautic Sinica, 2014,35(7):1787-1803(in Chinese).
[23] LUKE G, VAN BLARICUM T. The use of bonded rubber pads for the application of loads for structural testing of the p-3 orion leading edge:DSTO-TR-0433[R]. Melbourne:DSTO Aeronautical and Maritime Research Laboratory, 1997.
[24] 卓轶, 吕媛波, 张文东. 飞机结构强度试验中拉压垫加载技术研究[J]. 科学技术与工程,2016,16(2):244-248. ZHUO Y, LYU Y B, ZHANG W D. The research of tension/compression pad load technique in structure strength test[J].Science Technology and Engineering, 2016, 16(2):244-248(in Chinese).
[25] 巴塔西, 法洋洋, 于哲峰,等. 基于CATIA的飞机结构试验加载杠杆系统参数化建模方法[J]. 实验室研究与探索,2012,31(2):54-58. BA T X, FA Y Y, YU Z F, et al. Parameterized modeling for whiffletree loading system in aircraft structure test based on CATIA[J]. Research and Explobation in Laboratory, 2012,31(2):54-58(in Chinese).
[26] ZE X. Digital simulation of full scale static test of aircraft[J]. Chinese Journal of Aeronautics, 2005, 18(2):138-141.
[27] BATES D, SMITH G, LU D, et al. Rapid thermal non-destructive testing of aircraft components[J]. Composites Part B:Engineering, 2000, 31(3):175-185.
[28] 杜星, 王鑫涛. 阀控非对称缸单向加载方法研究[J]. 机床与液压, 2017, 45(22):105-108. DU X, WANG X T. Unidirectional loading method for valve controlled asymmetric cylinder[J]. Machine Tool & Hydraulics, 2017,45(22):105-108(in Chinese).
Outlines

/