[1] LENE F, DUVAUT G, OLIVIER-MAILHE M, et al. An advanced methodology for optimum design of a composite stiffened cylinder[J]. Composite Structures, 2009, 91(4):392-397.
[2] HAO W, YING Y, WEI Y, et al. Adaptive approximation-based optimization of composite advanced grid-stiffened cylinder[J]. Chinese Journal of Aeronautics, 2010, 23(4):423-429.
[3] 吴振强,程昊,张伟,等. 热环境对飞行器壁板结构动特性的影响[J]. 航空学报, 2013, 34(2):334-342. WU Z Q, CHENG H, ZHANG W, et al. Effects of thermal environment on dynamic properties of aerospace vehicle panel structures[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):334-342(in Chinese).
[4] SHI S S, SUN Z, REN M F, et al. Buckling resistance of grid-stiffened carbon-fiber thin-shell structures[J]. Composites Part B:Engineering, 2013, 45(1):888-896.
[5] WANG B, HAO P, LI G, et al. Generatrix shape optimization of stiffened shells for low imperfection sensitivity[J]. Science China Technological Sciences, 2014, 57(10):2012-2019.
[6] 马建峰,陈五一,赵岭, 等. 基于蜻蜓膜翅结构的飞机加强框的仿生设计[J]. 航空学报, 2009, 30(3):562-569. MA J F, CHEN W Y, ZHAO L, et al. Bionic design of aircraft reinforced frame based on structure of dragonfly wing[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3):562-569(in Chinese).
[7] WANG B, DU K F, HAO P, et al. Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression[J]. Thin-Walled Structures, 2016, 109:13-24.
[8] CHEN H J, TSAI S W. Analysis and optimum design of composite grid structures[J]. Journal of Composite Materials, 1996, 30(4):503-534.
[9] JONES R M. Buckling of circular cylindrical shells with multiple orthotropic layers and eccentric stiffeners[J]. AIAA Journal, 1968, 6(12):2301-2305.
[10] SADEGHIFAR M, BAGHERI M, JAFARI A A. Buckling analysis of stringer-stiffened laminated cylindrical shells with nonuniform eccentricity[J]. Archive of Applied Mechanics, 2011, 81(7):875-886.
[11] QUEK S C, WAAS A M, SHAHWAN K W, et al. Analysis of 2D triaxial flat braided textile composites[J]. International Journal of Mechanical Sciences, 2003, 45(6-7):1077-1096.
[12] MARTINEZ O A, SANKAR B V, HAFTKA R T, et al. Micromechanical analysis of composite corrugated-core sandwich panels for integral thermal protection systems[J]. AIAA Journal, 2007, 45(9):2323-2336.
[13] LEE C Y, YU W. Homogenization and dimensional reduction of composite plates with in-plane heterogeneity[J]. International Journal of Solids and Structures, 2011, 48(10):1474-1484.
[14] CHENG G D, CAI Y W, XU L. Novel implementation of homogenization method to predict effective properties of periodic materials[J]. Acta Mechanica Sinica, 2013, 29(4):550-556.
[15] CAI Y W, XU L, CHENG G D. Novel numerical implementation of asymptotic homogenization method for periodic plate structures[J]. International Journal of Solids and Structures, 2014, 51(1):284-292.
[16] 丛明煜, 王丽萍. 现代启发式算法理论研究[J]. 高技术通讯, 2003, 13(5):105-110. CONG M Y, WANG L P. Survey on the theory of meta-heuristic algorithms[J]. High Technology Letters, 2003, 13(5):105-110(in Chinese).
[17] RIKARDS R, ABRAMOVICH H, AUZINS J, et al. Surrogate models for optimum design of stiffened composite shells[J]. Composite Structures, 2004, 63(2):243-251.
[18] 郝鹏, 王博, 李刚, 等. T型截面多级加筋柱壳的缺陷敏感性及优化研究[J]. 工程力学, 2015, 32(8):223-228. HAO P, WANG B, LI G, et al. Imperfection sensitivity analysis and optimization of hierarchical stiffened shells with T-section stiffeners[J]. Engineering Mechanics, 2015, 32(8):223-228(in Chinese).
[19] ZHAO Y N, CHEN M J, YANG F, et al. Optimal design of hierarchical grid-stiffened cylindrical shell structures based on linear buckling and nonlinear collapse analyses[J]. Thin-Walled Structures, 2017, 119:315-323.
[20] 王博, 杜凯繁, 郝鹏, 等. 考虑几何缺陷的轴压双层蒙皮加筋柱壳结构设计[J]. 中国科学:物理学, 力学, 天文学, 2018, 48(1):1-8. WANG B, DU K F, HAO P, et al. Design of sandwich-walled cylindrical shell structure[J]. Science China Physica, Mechanica & Astronomica, 2018, 48(1):1-8(in Chinese).
[21] TIAN K, WANG B, ZHANG K, et al. Tailoring the optimal load-carrying efficiency of hierarchical stiffened shells by competitive sampling[J]. Thin-Walled Structures, 2018, 133:216-225.
[22] HAN Z H, GÖRTZ S, ZIMMERMANN R. Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function[J]. Aerospace Science and Technology, 2013, 25(1):177-189.
[23] HAN Z H, GÖRTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1885-1896.
[24] HAN Z H, ZIMMERMAN R, GÖRTZ S. Alternative cokriging method for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(5):1205-1210.
[25] 宋保维, 王新晶, 王鹏. 基于变保真度模型的AUV流体动力参数预测[J]. 机械工程学报, 2017, 53(18):176-182. SONG B W, WANG X J, WANG P. Aerodynamic optimization based on multi-fidelity surrogate[J]. Journal of Mechanical Engineering. 2017, 53(18):176-182(in Chinese).
[26] HAN Z H, GÖRTZ S, HAIN R. New results in numerical and experimental fluid mechanics VII[M]. Berlin:Springer Berlin Heidelberg, 2010:17-25.
[27] 黄礼铿, 高正红, 张德虎. 基于变可信度代理模型的气动优化[J]. 空气动力学学报, 2013, 31(6):783-788. HUANG L Q, GAO Z H, ZHANG D H, et al. Aerodynamic optimization based on multi-fidelity surrogate[J]. Acta Aerodynamica Sinica, 2013, 31(6):783-788(in Chinese).
[28] ZHOU Q, SHAO X, JIANG P, et al. An active learning metamodeling approach by sequentially exploiting difference information from variable-fidelity models[J]. Advanced Engineering Informatics, 2016, 30(3):283-297.
[29] ZHOU Q, SHAO X, JIANG P, et al. An active learning variable-fidelity metamodelling approach based on ensemble of metamodels and objective-oriented sequential sampling[J]. Journal of Engineering Design, 2016, 27(4-6):205-231.
[30] 刘蔚. 多学科设计优化方法在7000米载人潜水器总体设计中的应用[D]. 上海:上海交通大学, 2007:105-122. LIU W. Application of MDO method to 7000m HOV general design[D]. Shanghai:Shanghai Jiao Tong University, 2007:105-122(in Chinese).
[31] TIAN K, WANG B, HAO P, et al. A high-fidelity approximate model for determining lower-bound buckling loads for stiffened shells[J]. International Journal of Solids and Structures, 2018, 148:14-23.
[32] BENJAMIN P, KAREN W, MAX G. Survey of multifidelity methods in uncertainty propagation, inference, and optimization[J]. SIAM Review, 2018, 60(3):550-591.
[33] HAFTKA, RAPHAEL T. Combining global and local approximations[J]. AIAA Journal, 1991, 29(9):1523-1525.
[34] KEANE A J. Cokriging for robust design optimization[J]. AIAA Journal, 2012, 50(11):2351-2364.
[35] PERDIKARIS P, VENTURI D, ROYSET J O, et al. Multi-fidelity modelling via recursive co-kriging and Gaussian-Markov random fields[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2015, 471(2179):1-22.
[36] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge:MIT Press, 2006:7-31.
[37] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[38] 刘俊. 基于代理模型的高效气动优化设计方法及应用[D]. 西安:西北工业大学, 2015:60-65. LIU J. Efficient surrogate-based optimization method and its application in aerodynamic design[D]. Xi'an:Northwestern Polytechnical University, 2015:60-65(in Chinese).
[39] PARK C, HAFTKA R T, KIM N H. Remarks on multi-fidelity surrogates[J]. Structural and Multidisciplinary Optimization, 2017, 55(3):1029-1050.
[40] FERNÁNDEZ-GODINO M G, PARK C, KIM N H, et al. Issues in deciding whether to use multifidelity surrogates[J]. AIAA Journal, 2019, 57(5):2039-2054.
[41] WANG B, TIAN K, HAO P, et al. Numerical-based smeared stiffener method for global buckling analysis of grid-stiffened composite cylindrical shells[J]. Composite Structures, 2016, 152:807-815.
[42] 田阔. 基于多保真度建模的多层级筒壳屈曲分析及优化方法研究[D]. 大连:大连理工大学, 2018:66-70. TIAN K. Research on buckling analysis and optimization methods of hierarchical cylindrical shells based on multi-fidelity modeling[D]. Dalian:Dalian University of Technology, 2018:66-70(in Chinese).