[1] 军用飞机结构强度规范第7部分:气动弹性:GJB 67.7A-2008[S].北京:总装备部军标出版发行部, 2008:8-10. Military airplane structural strength specification part 7:Aeroelasticity:GJB 67.7A-2008[S].Beijing:General Armaments Department Military Standard Publication Distribution Department, 2008:8-10(in Chinese).
[2] 管德.飞机气动弹性力学手册[M].北京:航空工业出版社, 1994:215-217. GUAN D. Aircraft aeroelasticity hand-book[M]. Beijing:Aviation Industry Press, 1994:215-217(in Chinese).
[3] 杨超, 吴志刚, 万志强, 等.飞行器气动弹性原理[M].北京:北京航空航天大学出版社, 2001:148-167. YANG C, WU Z G, WAN Z Q, et al. Principle of aircraft aeroelasticity[M]. Beijing:Beihang University Press, 2001:148-167(in Chinese).
[4] 杨超, 黄超, 吴志刚, 等.气动伺服弹性研究的进展与挑战[J].航空学报, 2015, 36(4):1011-1033. YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033(in Chinese).
[5] SCHUSTE D M, LIU D D, HUTTSE U L J.Computational aeroelasticity:Success, progress, challenge[J]. Journal of Aircraft, 2003, 40(5):843-856.
[6] RAMSEY J K.NASA aeroelasticity handbook volume 2:Design guides part 2:NASA/TP-2006212490[R]. Cleveland:NASA Glenn Research Center, 2006.
[7] TAYLOR R M, THOMAS J E, MACKARON N G. Detail part optimization on the F-35 joint strike fighter:AIAA-2006-1868[R].Reston:AIAA, 2006.
[8] HAYES W B, GOODMAN C E. F/A-18E/F super hornet flutter clearance program:AIAA-2003-1940[R]. Reston:AIAA, 2003.
[9] ANDERSON W D, MORTARA S. F-22 aeroelastic design and test validation:AIAA-2007-1764[R]. Reston:AIAA, 2007.
[10] RADOVCICH N, LAYTON D. F-22 structural/aeroelastic design process with MDO examples:AIAA-1998-4732[R]. Reston:AIAA, 1998:2183-2192.
[11] PATEL S R, BLACK C L. Statistical modeling of F/A-22 flight test buffet data for probabilistic analysis:AIAA-2005-2289[R]. Reston:AIAA, 2005.
[12] RIVERA J A, FLORANCE J R.Contributions of dynamics tunnel testing to airplane flutter clear:AIAA-2000-1768[R]. Reston:AIAA, 2000.
[13] STANLEY R C, THOMAS E N, BOYD P. Transonic dynamics tunnel aeroelastic testing in support of aircraft development[J]. Journal of Aircraft, 2003, 40(5):820-831.
[14] BENNETT R M, FARMER M G. A wind tunnel technique for determining stability derivatives from cable mounted aeroelastic models:AIAA-1977-1128[R]. Reston:AIAA, 1977.
[15] 霍应元, 蒲利东, 赵冬强, 等.大型飞机气动弹性设计关键技术[J].航空科学技术, 2017, 28(5):1-7. HUO Y Y, PU L D, ZHAO D Q, et al. The key aeroelastic technologies of large aircraft[J]. Aeronautical Science & Technology, 2017, 28(5):1-7(in Chinese).
[16] 钱卫, 王标, 赵铁铭.全机结构相似跨声速颤振模型设计、制造与风洞试验[J].振动工程学报, 2010, 23(S1):304-308. QIAN W, WANG B, ZHAO T M, Design, Manufacture and wind tunnel test of an whole aircraft structure similar transonic flutter model[J].Journal of Vibration Engineering, 2010, 23(S1):304-308(in Chinese).
[17] 徐钦炜, 李秋彦.不同热环境下的颤振问题初探[J].应用数学和力学, 2014, 35(S1):37-41. XU Q W, LI Q Y. Preliminary research on aero-thermo-elasticity in different thermal condition[J]. Applied Mathematics and Mechanics, 2014, 35(S1):37-41(in Chinese).
[18] 谭光辉, 李秋彦, 邓俊.热环境下结构固有振动特性试验与分析[J].航空学报, 2016, 37(S1):32-37. TAN G H, LI Q Y, DENG J. Test and analysis of natural modal characteristics of a wing model with thermal effect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):32-37(in Chinese).
[19] 谭光辉, 李秋彦. 考虑热效应的气动伺服弹性分析方法研究[J]. 应用数学和力学, 2014, 35(S1):60-64. TAN G H, LI Q Y. Aeroservoelasticity analysis with thermal effects[J]. Applied Mathematics and Mechanics, 2014, 35(S1):60-64(in Chinese).
[20] 赵永辉, 胡海岩. 具有操纵面间隙非线性二维翼段的气动弹性分析[J]. 航空学报, 2003, 24(6):521-527. ZHAO Y H, HU H Y. Aeroelastic analysis of a two-dimensional airfoil with control surface freeplay nonlinearity[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6):521-527(in Chinese).
[21] 陈明凤, 刘炜, 金玉华. 折叠舵间隙非线性颤振分析研究[J]. 现代防御技术, 2013, 41(1):15-19. CHEN M F, LIU W, JIN Y H. Flutter analysis of folding rudder with freeplay nonlinearity[J]. Modern Defense Technology, 2013, 41(1):15-19(in Chinese).
[22] 陈识, 李秋彦, 冉玉国. 具有二维间隙非线性的全动舵面动力特性研究[J]. 四川理工学院学报, 2017, 30(2):60-64. CHEN S, LI Q Y, RAN Y G. Research on the vibration characteristics of an all-movable wing with two dimensional freeplay nonlinearity[J]. Journal of Sichuan University of Science & Engineering, 2017, 30(2):60-64(in Chinese).
[23] 冉玉国, 李秋彦, 杨兴华. 静不安定飞机全模跨声速颤振试验技术综述[J]. 四川理工学院学报, 2017, 30(2):49-54. RAN Y G, LI Q Y, YANG X H. An approach of transonic flutter test techniques for statically unstable aircraft scaled model[J]. Journal of Sichuan University of Science & Engineering, 2017, 30(2):49-54(in Chinese).
[24] 王斐, 李秋彦, 谢长川, 等. 考虑大变形的大展弦比机翼气动弹性优化设计[J]. 四川理工学院学报, 2017, 30(1):42-48. WANG F, LI Q Y, XIE C C, et al. Aeroelastic optimization design for high-aspect ratio wing under large deformation[J]. Journal of Sichuan University of Science & Engineering, 2017, 30(1):42-48(in Chinese).
[25] 雷博淇, 李秋彦.跨声速颤振数值模拟方法研究[J].应用数学和力学, 2014, 35(S1):15-18. LEI B Q, LI Q Y. An approach of numerical simulation for transonic flutter characteristics[J]. Applied Mathematics and Mechanics, 2014, 35(S1):15-18(in Chinese).
[26] 路波, 吕彬彬, 罗建国, 等.跨声速风洞全模颤振试验技术[J].航空学报, 2015, 36(4):1086-1092. LU B, LYU B B, LUO J G, et al. Wind tunnel technique for transonic full-model flutter test[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1086-1092(in Chinese).
[27] 路波, 杨兴华, 罗建国, 等.跨声速风洞全模颤振试验悬浮支撑系统[J].实验流体力学, 2009, 23(3):90-94. LU B, YANG X H, LUO J G, et al. Floating suspension system for full model flutter test in transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3):90-94(in Chinese).
[28] 郭洪涛, 路波, 余立, 等.某战斗机高速全模颤振风洞试验研究[J].航空学报, 2012, 33(10):1765-1771. GUO H T, LU B, YU L, et al. Investigation on full model flutter of a certain fighter plane in high-speed wind tunnel test[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1765-1771(in Chinese).
[29] 罗务奎, 谭申刚, 谢怀强, 等.确定颤振模型设计参数的方法研究[J].航空学报, 2013, 34(10):2383-2390. LUO W K, TAN S G, XIE H Q, et a1. Research on-methods used to determine flutter model design factors[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(10):2383-2390(in Chinese).
[30] 冉玉国, 李秋彦.一种快速优化方法在颤振试验模型设计中的应用[J].振动工程学报, 2012, 25(S1):339-342. RAN Y G, LI Q Y. Application of an efficient optimization method in flutter model design[J]. Journal of Vibration Engineering, 2012, 25(S1):339-342(in Chinese).
[31] 冉玉国, 李秋彦, 程勇. 低超重高强度全复材跨声速颤振模型设计制造与试验[J]. 应用数学和力学, 2014, 35(S1):146-150. RAN Y G, LI Q Y, CHENG Y. Design & manufacture and test of composite transonic flutter model with high strength and small overweight factor[J]. Applied Mathematics and Mechanics, 2014, 35(S1):146-150(in Chinese).
[32] 李秋彦, 陈国平, 杨智春.带飞行控制系统飞机颤振试飞的结构动响应研究[J].机械科学与技术, 2007, 26(9):1163-1166. LI Q Y, CHEN G P, YANG Z C. Study on structural dynamic response of aircraft in flight flutter test[J]. Mechanical Science and Technology for Aero-space Engineering, 2007, 26(9):1163-1166(in Chinese).
[33] 屈见忠, 沙长安.模态参数识别在飞行颤振试验中的应用[J].航空学报, 1990, 11(11):A618-A622. QU J Z, SHA C A.Application of identification method of modal parameter to flight flutter test[J].Acta Aeronautica et Astronautica Sinica, 1990, 11(11):A618-A622(in Chinese).
[34] 卢晓东. 大型飞机颤振试飞低频密集模态参数辨识[J].飞行力学, 2014, 32(3):270-272. LU X D. Flutter flight test parameters identification of aircraft with low-frequency and closely-spaced modes[J].Flight Dynamic, 2014, 32(3):270-272(in Chinese).
[35] 李秋彦, 陈国平.飞机结构与气动力及飞控系统耦合分析技术[J]. 南京航空航天大学学报, 2007, 39(6):736-741. LI Q Y, CHEN G P. Coupling analysis of aircraft structure with aerodynamics[J]. Journal of Nanjing University of Aeronautics &Astronautic, 2007, 39(6):736-741(in Chinese).
[36] 李秋彦. 飞机ASE分析技术[J]. 应用力学学报, 2001, 18(S1):178-183. LI Q Y. Techniques of aircraft ASE analysis[J]. China Journal of Applied Mechanics, 2001, 18(S1):178-183(in Chinese).
[37] 陈识, 李秋彦, 谭光辉.飞机操纵面间隙非线性对颤振特性的影响[J].应用数学和力学, 2014, 35(S1):90-94. CHEN S, LI Q Y, TAN G H. Influence of control surface with free-play nonlinearity on flutter characteristics[J]. Applied Mathematics and Mechanics. 2014, 35(S1):90-94(in Chinese).
[38] 雷博淇, 冉玉国, 李秋彦, 等. 折叠翼间隙对其颤振特性影响的试验研究[J]. 四川理工学院学报, 2017, 30(3):31-36. LEI B Q, RAN Y G, LI Q Y, et al. Experimental study of the flutter characteristics for folding wing with rotating freeplay[J]. Journal of Sichuan University of Science & Engineering, 2017, 30(3):31-36(in Chinese).
[39] 陈识, 李秋彦.飞行试验颤振模态分析软件开发[J].四川大学学报, 2012, 44(S1):304-308. CHEN S, LI Q Y. Software module developing of modal analysis for flutter test[J]. 2012, 44(S1):304-308(in Chinese).
[40] OUELLETTE J A, PATIL M J, KAPANIA R K. Scaling laws for flight control development and testing in the presence of aeroservoelastic interactions:AIAA-2012-4640[R]. Reston:AIAA, 2012.
[41] 张伟伟, 钟华寿, 肖华, 等. 飞行颤振试验的边界预测方法回顾与展望[J]. 航空学报, 2015, 36(5):1367-1384. ZHANG W W, ZHONG H S, XIAO H, et al. Review and prospect of flutter boundary prediction method for flight flutter testing[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1367-1384(in Chinese).
[42] 许云涛, 吴志刚, 杨超.地面颤振模拟试验中的非定常气动力模拟[J].航空学报, 2012, 33(11):1947-1957. XU Y T, WU Z G, YANG C.Simulation of the unsteady aerodynamic forces for ground flutter simulation test[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):1947-1957(in Chinese).
[43] SCHWEIGER J. MDO concepts for an European research project on active aeroelastic aircraft:AIAA-2002-5403[R]. Reston:AIAA, 2002.
[44] LIVNE E, WEISSHAAR T A. Aeroelasticity of nonconventional airplane configurations-past and future[J]. Journal of Aircraft, 2003, 40(6):1047-1065.
[45] FELT L R, HUTTSE U L J, NOLL T E, et al. Aeroservoelastic encounters[J]. Journal of Aircraft, 1979, 16(7):477-483
[46] DOWELL E H. Nonlinear aeroelasticity[J].Journal of Aircraft, 2003, 40(5):857-874.
[47] JEFFREY P T, DOWELL E H, KENNETH C H, et. Al. Further investigation of modeling limit cycle oscillation behavior of the F-16 fighter using a harmonic balance approach:AIAA-2005-1917[R]. Reston:AIAA, 2005.
[48] THOMPSON N, FARMER M.A stability analysis of an F/A-18 E/F cable mount model:NASA/TM-108989[R].Washington,D.C.:NASA Langley Research Center, 1994.
[49] CHIN J, BARBERO P.User's guide for a revised computer program to analyze the LRC 16 foot transonic dynamics tunnel active cable mount system:NASA/CR-132692[R]. Washington,D.C.:NASA Langley Research center, 1975.
[50] DOWELL E H. Some recent advances in nonlinear aeroelasticity:Fluid-structure interaction in the 21st century:AIAA-2010-3137[R]. Reston:AIAA, 2010.
[51] CARTER J E. A new boundary layer inviscid iteration technique for separated flow[C]//4th Computational Fluid Dynamics Conference. Reston:AIAA, 1979.
[52] JAMESON A, WOLFGANG S, ELI T. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]//14th Fluid and Plasma Dynamics Conference. Reston:AIAA, 1981.
[53] ZHANG Z, LIU F, SCHUSTER D M. An efficient Euler method on non-moving cartesian grids with boundary layer correction for wing flutter simulations[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006.
[54] KREISELMAIER E, LASCHKA B. Small disturbance Euler equations:Efficient and accurate tool for unsteady load prediction[J]. Journal of Aircraft, 2000, 37(5):770-778.
[55] EDWARDS J W. Transonic shock oscillations calculated with a new interactive boundary layer coupling method[C]//31st Aerospace Sciences Meeting. Reston:AIAA, 1993.
[56] CHEN P C, LEE D H. Flight-loads effect on freeplay induced limit cycle oscillation:AIAA-2006-1851[R]. Reston:AIAA, 2006.
[57] 杨智春, 田玮, 谷迎松, 等. 带集中非线性的机翼气动弹性问题研究进展[J]. 航空学报, 2016, 37(7):2013-2044. YANG Z C, TIAN W, GU Y S, et al. Advance in the study on wing aeroelasticity with concentrated nonlinearity[J]. Acta Aeronautic et Astronautic Sinica, 2016, 37(7):2013-2044(in Chinese).
[58] 吴强, 万志强, 杨超.考虑结构动力学与颤振约束的颤振缩比模型优化设计[J].航空学报, 2011, 32(7):1210-1216. WU Q, WAN Z Q, YANG C. Design optimization of scaled flutter model considering structural dynamics and flutter constraints[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1210-1216(in Chinese).
[59] LI D C, ZHAO S W, RONCH A D, et al. A review of modeling and analysis of morphing wings[J]. Aerospace Sciences and Technology, 2018, 100:46-62.
[60] ARENA M, CONCILIO A, PECORA R. Aero-servo-elastic design of a morphing wing trailing edge system for enhanced cruise performance[J]. Aerospace Science and Technology, 2019, 86:215-235.
[61] RICCI S, TERRANEO M. Application of MDO techniques to the preliminary design of morphed aircraft:AIAA-2006-7018[R]. Reston:AIAA, 2006.
[62] GERN F H, INMAN D J, KAPANIA K. Structural and aeroelastic modeling of general planform UCAV wings with morphing airfoils[J]. AIAA Journal, 2002, 40(4):628-637.
[63] MATUTE K, REICH G W. An aeroelastic topology optimization approach for adaptive wing design:AIAA-2004-1805[R]. Reston:AIAA, 2004.
[64] JAE-SUNG B T S, DANIEL J I. Aerodynamic and aeroelastic considerations of a variable-span morphing wing:AIAA-2004-1726[R]. Reston:AIAA, 2004.
[65] SAMUEL C, ANDREI V P, RUXANDRA M B. New aeroelastic studies for a morphing wing:AIAA-2010-56[R]. Reston:AIAA, 2010.
[66] EVGENY S, MOTI K, LEVY Y. Computational aeroelastic simulation of rapidly morphing air vehicles:AIAA-2010-2793[R]. Reston:AIAA, 2010.
[67] CIAMPA P D, ZILL T, NAGEL B. Aeroelastic design and optimization of unconventional aircraft configurations in a distributed design environment:AIAA-2012-1925[R]. Reston:AIAA, 2012.