Review

Review of aeroelasticity design for advanced fighter

  • LI Qiuyan ,
  • LI Gang ,
  • WEI Yangtian ,
  • RAN Yuguo ,
  • WU Bo ,
  • TAN Guanghui ,
  • LI Yan ,
  • CHEN Shi ,
  • LEI Boqi ,
  • XU Qinwei
Expand
  • AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China

Received date: 2019-09-02

  Revised date: 2019-09-27

  Online published: 2019-11-07

Abstract

The birth of Chinese new-generation fighter leads all the technical innovation and development in aircraft designing field. Lean aero-elasticity design and verification technology system were established in AVIC Chengdu Aircraft Design and Research Institute according to the project development requirements and task particularity. Critical technology research and optimization design and analysis aiming at enhancing aircraft aero-elastic quality were carried out based on multi-disciplinary design optimization process. Whole aircraft dynamic characteristics ground test with consideration of all-movable surface structural nonlinearity, subsonic/transonic/supersonic flutter model wind tunnel tests that cover all Mach numbers and flight aero-elasticity test verification were completed and passed. Aero-elasticity design objective was achieved within a short development period, providing technical support for successful development of new-generation fighter. This paper describes the design process, major technical work of the aircraft, as well as the gained technical progress, capability enhancement, and knowledge engineering construction of aeroelastic design with research institute characteristics.

Cite this article

LI Qiuyan , LI Gang , WEI Yangtian , RAN Yuguo , WU Bo , TAN Guanghui , LI Yan , CHEN Shi , LEI Boqi , XU Qinwei . Review of aeroelasticity design for advanced fighter[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(6) : 523430 -523430 . DOI: 10.7527/S1000-6893.2019.23430

References

[1] 军用飞机结构强度规范第7部分:气动弹性:GJB 67.7A-2008[S].北京:总装备部军标出版发行部, 2008:8-10. Military airplane structural strength specification part 7:Aeroelasticity:GJB 67.7A-2008[S].Beijing:General Armaments Department Military Standard Publication Distribution Department, 2008:8-10(in Chinese).
[2] 管德.飞机气动弹性力学手册[M].北京:航空工业出版社, 1994:215-217. GUAN D. Aircraft aeroelasticity hand-book[M]. Beijing:Aviation Industry Press, 1994:215-217(in Chinese).
[3] 杨超, 吴志刚, 万志强, 等.飞行器气动弹性原理[M].北京:北京航空航天大学出版社, 2001:148-167. YANG C, WU Z G, WAN Z Q, et al. Principle of aircraft aeroelasticity[M]. Beijing:Beihang University Press, 2001:148-167(in Chinese).
[4] 杨超, 黄超, 吴志刚, 等.气动伺服弹性研究的进展与挑战[J].航空学报, 2015, 36(4):1011-1033. YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033(in Chinese).
[5] SCHUSTE D M, LIU D D, HUTTSE U L J.Computational aeroelasticity:Success, progress, challenge[J]. Journal of Aircraft, 2003, 40(5):843-856.
[6] RAMSEY J K.NASA aeroelasticity handbook volume 2:Design guides part 2:NASA/TP-2006212490[R]. Cleveland:NASA Glenn Research Center, 2006.
[7] TAYLOR R M, THOMAS J E, MACKARON N G. Detail part optimization on the F-35 joint strike fighter:AIAA-2006-1868[R].Reston:AIAA, 2006.
[8] HAYES W B, GOODMAN C E. F/A-18E/F super hornet flutter clearance program:AIAA-2003-1940[R]. Reston:AIAA, 2003.
[9] ANDERSON W D, MORTARA S. F-22 aeroelastic design and test validation:AIAA-2007-1764[R]. Reston:AIAA, 2007.
[10] RADOVCICH N, LAYTON D. F-22 structural/aeroelastic design process with MDO examples:AIAA-1998-4732[R]. Reston:AIAA, 1998:2183-2192.
[11] PATEL S R, BLACK C L. Statistical modeling of F/A-22 flight test buffet data for probabilistic analysis:AIAA-2005-2289[R]. Reston:AIAA, 2005.
[12] RIVERA J A, FLORANCE J R.Contributions of dynamics tunnel testing to airplane flutter clear:AIAA-2000-1768[R]. Reston:AIAA, 2000.
[13] STANLEY R C, THOMAS E N, BOYD P. Transonic dynamics tunnel aeroelastic testing in support of aircraft development[J]. Journal of Aircraft, 2003, 40(5):820-831.
[14] BENNETT R M, FARMER M G. A wind tunnel technique for determining stability derivatives from cable mounted aeroelastic models:AIAA-1977-1128[R]. Reston:AIAA, 1977.
[15] 霍应元, 蒲利东, 赵冬强, 等.大型飞机气动弹性设计关键技术[J].航空科学技术, 2017, 28(5):1-7. HUO Y Y, PU L D, ZHAO D Q, et al. The key aeroelastic technologies of large aircraft[J]. Aeronautical Science & Technology, 2017, 28(5):1-7(in Chinese).
[16] 钱卫, 王标, 赵铁铭.全机结构相似跨声速颤振模型设计、制造与风洞试验[J].振动工程学报, 2010, 23(S1):304-308. QIAN W, WANG B, ZHAO T M, Design, Manufacture and wind tunnel test of an whole aircraft structure similar transonic flutter model[J].Journal of Vibration Engineering, 2010, 23(S1):304-308(in Chinese).
[17] 徐钦炜, 李秋彦.不同热环境下的颤振问题初探[J].应用数学和力学, 2014, 35(S1):37-41. XU Q W, LI Q Y. Preliminary research on aero-thermo-elasticity in different thermal condition[J]. Applied Mathematics and Mechanics, 2014, 35(S1):37-41(in Chinese).
[18] 谭光辉, 李秋彦, 邓俊.热环境下结构固有振动特性试验与分析[J].航空学报, 2016, 37(S1):32-37. TAN G H, LI Q Y, DENG J. Test and analysis of natural modal characteristics of a wing model with thermal effect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):32-37(in Chinese).
[19] 谭光辉, 李秋彦. 考虑热效应的气动伺服弹性分析方法研究[J]. 应用数学和力学, 2014, 35(S1):60-64. TAN G H, LI Q Y. Aeroservoelasticity analysis with thermal effects[J]. Applied Mathematics and Mechanics, 2014, 35(S1):60-64(in Chinese).
[20] 赵永辉, 胡海岩. 具有操纵面间隙非线性二维翼段的气动弹性分析[J]. 航空学报, 2003, 24(6):521-527. ZHAO Y H, HU H Y. Aeroelastic analysis of a two-dimensional airfoil with control surface freeplay nonlinearity[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6):521-527(in Chinese).
[21] 陈明凤, 刘炜, 金玉华. 折叠舵间隙非线性颤振分析研究[J]. 现代防御技术, 2013, 41(1):15-19. CHEN M F, LIU W, JIN Y H. Flutter analysis of folding rudder with freeplay nonlinearity[J]. Modern Defense Technology, 2013, 41(1):15-19(in Chinese).
[22] 陈识, 李秋彦, 冉玉国. 具有二维间隙非线性的全动舵面动力特性研究[J]. 四川理工学院学报, 2017, 30(2):60-64. CHEN S, LI Q Y, RAN Y G. Research on the vibration characteristics of an all-movable wing with two dimensional freeplay nonlinearity[J]. Journal of Sichuan University of Science & Engineering, 2017, 30(2):60-64(in Chinese).
[23] 冉玉国, 李秋彦, 杨兴华. 静不安定飞机全模跨声速颤振试验技术综述[J]. 四川理工学院学报, 2017, 30(2):49-54. RAN Y G, LI Q Y, YANG X H. An approach of transonic flutter test techniques for statically unstable aircraft scaled model[J]. Journal of Sichuan University of Science & Engineering, 2017, 30(2):49-54(in Chinese).
[24] 王斐, 李秋彦, 谢长川, 等. 考虑大变形的大展弦比机翼气动弹性优化设计[J]. 四川理工学院学报, 2017, 30(1):42-48. WANG F, LI Q Y, XIE C C, et al. Aeroelastic optimization design for high-aspect ratio wing under large deformation[J]. Journal of Sichuan University of Science & Engineering, 2017, 30(1):42-48(in Chinese).
[25] 雷博淇, 李秋彦.跨声速颤振数值模拟方法研究[J].应用数学和力学, 2014, 35(S1):15-18. LEI B Q, LI Q Y. An approach of numerical simulation for transonic flutter characteristics[J]. Applied Mathematics and Mechanics, 2014, 35(S1):15-18(in Chinese).
[26] 路波, 吕彬彬, 罗建国, 等.跨声速风洞全模颤振试验技术[J].航空学报, 2015, 36(4):1086-1092. LU B, LYU B B, LUO J G, et al. Wind tunnel technique for transonic full-model flutter test[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1086-1092(in Chinese).
[27] 路波, 杨兴华, 罗建国, 等.跨声速风洞全模颤振试验悬浮支撑系统[J].实验流体力学, 2009, 23(3):90-94. LU B, YANG X H, LUO J G, et al. Floating suspension system for full model flutter test in transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3):90-94(in Chinese).
[28] 郭洪涛, 路波, 余立, 等.某战斗机高速全模颤振风洞试验研究[J].航空学报, 2012, 33(10):1765-1771. GUO H T, LU B, YU L, et al. Investigation on full model flutter of a certain fighter plane in high-speed wind tunnel test[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1765-1771(in Chinese).
[29] 罗务奎, 谭申刚, 谢怀强, 等.确定颤振模型设计参数的方法研究[J].航空学报, 2013, 34(10):2383-2390. LUO W K, TAN S G, XIE H Q, et a1. Research on-methods used to determine flutter model design factors[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(10):2383-2390(in Chinese).
[30] 冉玉国, 李秋彦.一种快速优化方法在颤振试验模型设计中的应用[J].振动工程学报, 2012, 25(S1):339-342. RAN Y G, LI Q Y. Application of an efficient optimization method in flutter model design[J]. Journal of Vibration Engineering, 2012, 25(S1):339-342(in Chinese).
[31] 冉玉国, 李秋彦, 程勇. 低超重高强度全复材跨声速颤振模型设计制造与试验[J]. 应用数学和力学, 2014, 35(S1):146-150. RAN Y G, LI Q Y, CHENG Y. Design & manufacture and test of composite transonic flutter model with high strength and small overweight factor[J]. Applied Mathematics and Mechanics, 2014, 35(S1):146-150(in Chinese).
[32] 李秋彦, 陈国平, 杨智春.带飞行控制系统飞机颤振试飞的结构动响应研究[J].机械科学与技术, 2007, 26(9):1163-1166. LI Q Y, CHEN G P, YANG Z C. Study on structural dynamic response of aircraft in flight flutter test[J]. Mechanical Science and Technology for Aero-space Engineering, 2007, 26(9):1163-1166(in Chinese).
[33] 屈见忠, 沙长安.模态参数识别在飞行颤振试验中的应用[J].航空学报, 1990, 11(11):A618-A622. QU J Z, SHA C A.Application of identification method of modal parameter to flight flutter test[J].Acta Aeronautica et Astronautica Sinica, 1990, 11(11):A618-A622(in Chinese).
[34] 卢晓东. 大型飞机颤振试飞低频密集模态参数辨识[J].飞行力学, 2014, 32(3):270-272. LU X D. Flutter flight test parameters identification of aircraft with low-frequency and closely-spaced modes[J].Flight Dynamic, 2014, 32(3):270-272(in Chinese).
[35] 李秋彦, 陈国平.飞机结构与气动力及飞控系统耦合分析技术[J]. 南京航空航天大学学报, 2007, 39(6):736-741. LI Q Y, CHEN G P. Coupling analysis of aircraft structure with aerodynamics[J]. Journal of Nanjing University of Aeronautics &Astronautic, 2007, 39(6):736-741(in Chinese).
[36] 李秋彦. 飞机ASE分析技术[J]. 应用力学学报, 2001, 18(S1):178-183. LI Q Y. Techniques of aircraft ASE analysis[J]. China Journal of Applied Mechanics, 2001, 18(S1):178-183(in Chinese).
[37] 陈识, 李秋彦, 谭光辉.飞机操纵面间隙非线性对颤振特性的影响[J].应用数学和力学, 2014, 35(S1):90-94. CHEN S, LI Q Y, TAN G H. Influence of control surface with free-play nonlinearity on flutter characteristics[J]. Applied Mathematics and Mechanics. 2014, 35(S1):90-94(in Chinese).
[38] 雷博淇, 冉玉国, 李秋彦, 等. 折叠翼间隙对其颤振特性影响的试验研究[J]. 四川理工学院学报, 2017, 30(3):31-36. LEI B Q, RAN Y G, LI Q Y, et al. Experimental study of the flutter characteristics for folding wing with rotating freeplay[J]. Journal of Sichuan University of Science & Engineering, 2017, 30(3):31-36(in Chinese).
[39] 陈识, 李秋彦.飞行试验颤振模态分析软件开发[J].四川大学学报, 2012, 44(S1):304-308. CHEN S, LI Q Y. Software module developing of modal analysis for flutter test[J]. 2012, 44(S1):304-308(in Chinese).
[40] OUELLETTE J A, PATIL M J, KAPANIA R K. Scaling laws for flight control development and testing in the presence of aeroservoelastic interactions:AIAA-2012-4640[R]. Reston:AIAA, 2012.
[41] 张伟伟, 钟华寿, 肖华, 等. 飞行颤振试验的边界预测方法回顾与展望[J]. 航空学报, 2015, 36(5):1367-1384. ZHANG W W, ZHONG H S, XIAO H, et al. Review and prospect of flutter boundary prediction method for flight flutter testing[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1367-1384(in Chinese).
[42] 许云涛, 吴志刚, 杨超.地面颤振模拟试验中的非定常气动力模拟[J].航空学报, 2012, 33(11):1947-1957. XU Y T, WU Z G, YANG C.Simulation of the unsteady aerodynamic forces for ground flutter simulation test[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):1947-1957(in Chinese).
[43] SCHWEIGER J. MDO concepts for an European research project on active aeroelastic aircraft:AIAA-2002-5403[R]. Reston:AIAA, 2002.
[44] LIVNE E, WEISSHAAR T A. Aeroelasticity of nonconventional airplane configurations-past and future[J]. Journal of Aircraft, 2003, 40(6):1047-1065.
[45] FELT L R, HUTTSE U L J, NOLL T E, et al. Aeroservoelastic encounters[J]. Journal of Aircraft, 1979, 16(7):477-483
[46] DOWELL E H. Nonlinear aeroelasticity[J].Journal of Aircraft, 2003, 40(5):857-874.
[47] JEFFREY P T, DOWELL E H, KENNETH C H, et. Al. Further investigation of modeling limit cycle oscillation behavior of the F-16 fighter using a harmonic balance approach:AIAA-2005-1917[R]. Reston:AIAA, 2005.
[48] THOMPSON N, FARMER M.A stability analysis of an F/A-18 E/F cable mount model:NASA/TM-108989[R].Washington,D.C.:NASA Langley Research Center, 1994.
[49] CHIN J, BARBERO P.User's guide for a revised computer program to analyze the LRC 16 foot transonic dynamics tunnel active cable mount system:NASA/CR-132692[R]. Washington,D.C.:NASA Langley Research center, 1975.
[50] DOWELL E H. Some recent advances in nonlinear aeroelasticity:Fluid-structure interaction in the 21st century:AIAA-2010-3137[R]. Reston:AIAA, 2010.
[51] CARTER J E. A new boundary layer inviscid iteration technique for separated flow[C]//4th Computational Fluid Dynamics Conference. Reston:AIAA, 1979.
[52] JAMESON A, WOLFGANG S, ELI T. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]//14th Fluid and Plasma Dynamics Conference. Reston:AIAA, 1981.
[53] ZHANG Z, LIU F, SCHUSTER D M. An efficient Euler method on non-moving cartesian grids with boundary layer correction for wing flutter simulations[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006.
[54] KREISELMAIER E, LASCHKA B. Small disturbance Euler equations:Efficient and accurate tool for unsteady load prediction[J]. Journal of Aircraft, 2000, 37(5):770-778.
[55] EDWARDS J W. Transonic shock oscillations calculated with a new interactive boundary layer coupling method[C]//31st Aerospace Sciences Meeting. Reston:AIAA, 1993.
[56] CHEN P C, LEE D H. Flight-loads effect on freeplay induced limit cycle oscillation:AIAA-2006-1851[R]. Reston:AIAA, 2006.
[57] 杨智春, 田玮, 谷迎松, 等. 带集中非线性的机翼气动弹性问题研究进展[J]. 航空学报, 2016, 37(7):2013-2044. YANG Z C, TIAN W, GU Y S, et al. Advance in the study on wing aeroelasticity with concentrated nonlinearity[J]. Acta Aeronautic et Astronautic Sinica, 2016, 37(7):2013-2044(in Chinese).
[58] 吴强, 万志强, 杨超.考虑结构动力学与颤振约束的颤振缩比模型优化设计[J].航空学报, 2011, 32(7):1210-1216. WU Q, WAN Z Q, YANG C. Design optimization of scaled flutter model considering structural dynamics and flutter constraints[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1210-1216(in Chinese).
[59] LI D C, ZHAO S W, RONCH A D, et al. A review of modeling and analysis of morphing wings[J]. Aerospace Sciences and Technology, 2018, 100:46-62.
[60] ARENA M, CONCILIO A, PECORA R. Aero-servo-elastic design of a morphing wing trailing edge system for enhanced cruise performance[J]. Aerospace Science and Technology, 2019, 86:215-235.
[61] RICCI S, TERRANEO M. Application of MDO techniques to the preliminary design of morphed aircraft:AIAA-2006-7018[R]. Reston:AIAA, 2006.
[62] GERN F H, INMAN D J, KAPANIA K. Structural and aeroelastic modeling of general planform UCAV wings with morphing airfoils[J]. AIAA Journal, 2002, 40(4):628-637.
[63] MATUTE K, REICH G W. An aeroelastic topology optimization approach for adaptive wing design:AIAA-2004-1805[R]. Reston:AIAA, 2004.
[64] JAE-SUNG B T S, DANIEL J I. Aerodynamic and aeroelastic considerations of a variable-span morphing wing:AIAA-2004-1726[R]. Reston:AIAA, 2004.
[65] SAMUEL C, ANDREI V P, RUXANDRA M B. New aeroelastic studies for a morphing wing:AIAA-2010-56[R]. Reston:AIAA, 2010.
[66] EVGENY S, MOTI K, LEVY Y. Computational aeroelastic simulation of rapidly morphing air vehicles:AIAA-2010-2793[R]. Reston:AIAA, 2010.
[67] CIAMPA P D, ZILL T, NAGEL B. Aeroelastic design and optimization of unconventional aircraft configurations in a distributed design environment:AIAA-2012-1925[R]. Reston:AIAA, 2012.
Outlines

/