[1] 王晓东, 康顺. 多项式混沌方法在随机方腔流动模拟中的应用[J]. 中国科学:技术科学, 2011,41(6):790-798. WANG X D, KANG S. Application of polynomial chaos on numerical simulation of stochastic cavity flow[J]. Sci China Tech Sci, 2011,41(6):790-798 (in Chinese).
[2] 刘智益, 王晓东, 康顺. 多元多项式混沌法在随机方腔流动模拟中的应用[J]. 工程热物理学报, 2012, 33(3):419-422. LIU Z Y, WANG X D, KANG S. Application of multidimensional polynomial chaos on numerical simulations of stochastic cavity flow[J]. Journal of Engineering Thermophysics, 2012, 33(3):419-422 (in Chinese).
[3] FISHMAN G. Monte Carlo:Concepts, algorithms and applications[M]. New York:Springer, 1996.
[4] GHANEM R, SPANOS P. Stochastic finite elements:A spectral approach[M]. New York:Springer, 1938.
[5] XIU D, KARNIADAKIS G. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal of Science Computer, 2002, 24(2):619-644.
[6] NAJM H N. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 2009, 41:35-52.
[7] WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60:897-936.
[8] GHANEM R G, SPANOS P D. Stochastic finite elements:A spectral approach[M]. Revised edition. New York:Dover Publications, 2003.
[9] XIU D, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187:137-167.
[10] LE MAITRE O P, KNIO O, HABIB N N, et al. A stochastic projection method for fluid flow I. Basic formulation[J]. Journal of Computational Physics, 2001, 173:481-511.
[11] LACOR C, SMIRNOV S. Uncertainty propagation in the solution of compressible Navier-Stokes equations using polynomial chaos decomposition[C]//NATO RTO AVF-147 Symposium on Computational Uncertainty in Military Vehide Design, 2007.
[12] 王晓东, 康顺. 多项式混沌法求解随机Burgers 方程[J]. 工程热物理学报, 2010, 31(6):393-398. WANG X D, KANG S. Solving sochastic Burgers equation using polynomial chaos decomposition[J]. Journal of Engineering Thermophysics, 2010, 31(6):393-398 (in Chinese).
[13] ELDRED M S. Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design:AIAA-2009-2274[R]. Reston, VA:AIAA, 2009.
[14] HOSDER S, WALTERS R W, BALCH M. Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics[J]. AIAA Journal, 2010, 48(12):2721-2730.
[15] 张伟, 王小永, 于剑, 等. 来流导致的高超声速气动热不确定性量化分析[J]. 北京航空航天大学学报, 2018, 44(5):1102-1109. ZHANG W, WANG X Y, YU J, et al. Uncertainty quantification analysis in hypersonic aerothermodynamics due to freestream[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5):1102-1109 (in Chinese).
[16] 刘全, 王瑞利, 林忠, 等. 爆轰计算JWL状态方程参数不确定性研究[J]. 爆炸与冲击, 2013,33(6):647-654. LIU Q, WANG R L, LIN Z, et al. Uncertainty quantification for JWL EOS parameters in explosive numerical simulation[J]. Explosion and Shock Waves, 2013, 33(6):647-654 (in Chinese).
[17] LUCOR D, KARNIADAKIS G E. Adaptive generalized polynomial chaos for nonlinear random oscillators[J]. SIAM Journal on Scientific Computing, 2004, 26(2):720-735.
[18] WAN X, KARNIADAKIS G E. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations[J]. Journal of Computational Physicss, 2005, 209(2):617-642.
[19] BLATMAN G, SUDRET B. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[J]. Probability Engineering Mechanics, 2010, 25(2):183-97.
[20] BLATMAN G, SUDRET B. Adaptive sparse polynomial chaos expansion based on least angle regression[J]. Journal of Computational Physics, 2011, 230(6):2345-2367.
[21] BLATMAN G, SUDRET B. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2010, 95(11):1216-1229.
[22] NAIR P B, KEANE A J. Stochastic reduced basis methods[J]. AIAA Journal, 2002, 40(8):1653-1664.
[23] RAISEE M, KUMAR D, LACOR C. A non-intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition[J]. International Journal for Numerical Methods in Engineering, 2015, 103(4):293-312.
[24] TODOR R A, SCHWAB C. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients[J]. IMA Journal of Numerical Analysis, 2007, 27(2):232.
[25] BIERI M, SCHWAB C. Sparse high order FEM for elliptic spdes[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(1314):1149-1170.
[26] DOOSTAN A, OWHADI H. A non-adapted sparse approximation of PDEs with stochastic inputs[J]. Journal of Computational Physics, 2011, 230(8):3015-3034.
[27] MATHELIN L, GALLIVAN K. A compressed sensing approach for partial differential equations with random input data[J]. Communications in Computational Physics, 2012, 12(4):919-954.
[28] YANG X, KARNIADAKIS G E. Reweighted 1 minimization method for stochastic elliptic differential equations[J]. Journal of Computational Physics, 2013, 248:87-108.
[29] PENG J, HAMPTON J, DOOSTAN A. A weighted 1-minimization approach for sparse polynomial chaos expansions[J]. Journal of Computational Physics, 2014, 267:92-111.
[30] SARGSYAN K, SAFTA C, NAJM H N, et al. Dimensionality reduction for complex models via bayesian compressive sensing[J]. International Journal of Uncertainty Quantify, 2014, 4(1):63-93.
[31] HAMPTON J, DOOSTAN A. Compressive sampling of polynomial chaos expansions:Convergence analysis and sampling strategies[J]. Journal of Computational Physics, 2015, 280:363-386.
[32] JAKEMAN J D, ELDRED M S, SARGSYAN K. Enhancing 1-minimization estimates of polynomial chaos expansions using basis selection[J]. Journal of Computational Physics, 2015, 289:18-34.
[33] SAEED S, MEHRDAD R, MICHEL J C, et al. Efficient uncertainty quantification of stochastic CFD problems using sparse polynomial chaos and compressed sensing[J]. Computers and Fluids, 2017, 157:296-321.
[34] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with Mflow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
[35] COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE2822 pressure distributions, and boundary layer and wake measurements, experimental data base for computer program assessment:AGARD-1979-0138[R]. Paris:AGARD, 1979.
[36] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flowst:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.
[37] 赵辉,胡星志,张健,等. 湍流模型系数的不确定度对翼型绕流模拟的影响[J].航空学报, 2019, 40 (6):122581. ZHAO H, HU X Z, ZHANG J, et al. Effects of the uncertainty in turbulence model closure coefficients on the simulation of flow over airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):122581(in Chinese).
[38] SOBOL I. Sensitivity estimates for nonlinear mathematical models[J]. Mathematical Modeling and Computational, Experiment,1993(1):407-414.
[39] 胡军,张树道,基于多项式混沌的全局敏感度分析[J]. 计算物理,2016, 33(1):1-13. HU J, ZHANG S D. Global sensitivity analysis based on polynomial chaos[J]. Chinese Journal of Computational Phsics, 2016, 33(1):1-13 (in Chinese).
[40] LACHAUD J, LAUB B. Ablation workshop test case[C]//4th Ablation Workshop, 2011:1-3.
[41] 刘骁, 国义军. 碳化材料三维烧蚀热响应有限元计算研究[J]. 宇航学报, 2016, 37(9):1150-1156. LIU X, GUO Y J. Numerical simulation research on three-dimensional ablative thermal response of charring ablators[J]. Journal of Astronautics, 2016, 37(9):1150-1156 (in Chinese).