Material Engineering and Mechanical Manufacturing

Eddy current testing of internal defect in additive/subtractive hybrid manufacturing

  • WANG Longqun ,
  • ZHANG Bi ,
  • PENG Ying ,
  • XIE Guoyin ,
  • BAI Qian ,
  • WANG Yibo
Expand
  • 1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China;
    2. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
    3. Technology Center, Xi'an Aero Engine Ltd., Aero Engine Corporation of China, Xi'an 710021, China

Received date: 2019-05-20

  Revised date: 2019-11-01

  Online published: 2019-10-31

Supported by

National Natural Science Foundation of China (51605077); Fundamental Research Layout of Shenzhen (JCYJ20170817111811303); Collaborative Innovation Program of Shenzhen (GJHZ20180411143506667)

Abstract

Eddy Current Testing (ECT) technology is suitable for the complex processing environment of Additive/Subtractive Hybrid Manufacturing (ASHM) due to its non-contact, couplant-free and high-sensitive features. An analytical model is established to calculate the internal current distribution of the semi-infinite sample without defects. A titanium alloy sample with internal artificial-defects is fabricated by ASHM and the ECT experiments are conducted on it to study the effect of the excitation frequency and the lift-off distance on the testing depth. Both the theoretical and experimental results show that for a deep internal defect, a lower excitation frequency leads to a larger reactance increment signal and the lift-off distance has little effect on the reactance increment signal. The study concludes that the optimal excitation frequency of ECT is 90 kHz, and the optimal lift-off distance is 0.97 mm. The conclusion provides a theoretical foundation for the integration of ASHM and ECT.

Cite this article

WANG Longqun , ZHANG Bi , PENG Ying , XIE Guoyin , BAI Qian , WANG Yibo . Eddy current testing of internal defect in additive/subtractive hybrid manufacturing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(3) : 423170 -423170 . DOI: 10.7527/S1000-6893.2019.23170

References

[1] KARUNAKARAN K P, SURYAKUMAR S, PUSHPA V, et al. Low cost integration of additive and subtractive processes for hybrid layered manufacturing[J]. Robotics & Computer Integrated Manufacturing, 2010, 26(5):490-499.
[2] DU W, BAI Q, WANG Y B, et al. Eddy current detection of subsurface defects for additive/subtractive hybrid manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9-12):3185-3195.
[3] MASUO H, TANAKA Y, MOROKOSHI S, et al. Effects of defects, surface roughness and HIP on fatigue strength of Ti-6Al-4V manufactured by additive manufacturing[J]. Procedia Structural Integrity, 2017, 7:19-26.
[4] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698 (in Chinese).
[5] 杨平华,高祥熙,梁菁,等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45(9):13-21. YANG P H, GAO X X, LIANG J, et al. Development tread and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45(9):13-21 (in Chinese).
[6] 凌松. 增材制造技术及其制品的无损检测进展[J]. 无损检测, 2016, 38(6):60-64. LING S. Additive manufacture technique and related NDT for its products[J]. Nondestructive Testing,2016, 38(6):60-64 (in Chinese).
[7] HIRSCH M, CATCHPOLESMITH S, PATEL R, et al. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy[J]. Proceedings Mathematical Physical & Engineering Sciences, 2017, 473(2205):20170194.
[8] RIEDER H, DILLHOFER A, SPIES M, et al. Online monitoring of additive manufacturing processes using ultrasound[C]//11th European Conference on Non-Destructive Testing, 2014:6-10.
[9] ZANINI F, HERMANEK P, PATHORE J, et al. Investigation on the accuracy of CT porosity analysis of additive manufactured metallic parts[C]//Digital Industrial Radiology and Computed Tomography, 2015.
[10] 孙钟,李全育,刁海波,等. 温度对超声波检测缺陷定位定量的影响[J]. 无损检测, 2011, 33(4):26-29. SUN Z, LI Q Y, DIAO H B, et al. Temperature effect on quantitative ultrasonic testing of defects[J]. Nondestructive Testing, 2011, 33(4):26-29 (in Chinese).
[11] 李世虎. 工业CT重建算法加速及三维可视化技术[D].太原:中北大学, 2016:3-5. LI S H. Industrial CT reconstruction algorithm acceleration and 3D visualization technology[D]. Taiyuan:North University of China, 2016:3-5 (in Chinese).
[12] 任吉林,林俊明,徐可北. 涡流检测[M]. 北京:机械工业出版社, 2013:1-4. REN J L, LIN J M, XU K B. Eddy current detection[M]. Beijing:China Machine Press, 2013:1-4 (in Chinese).
[13] 宋凯,刘堂先,李来平,等. 航空发动机涡轮叶片裂纹的阵列涡流检测仿真[J]. 航空学报, 2014, 35(8):2355-2363. SONG K, LIU T X, LI L P, et al. Simulation on aero-engine turbine blade cracks detection based on eddy current array[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2355-2363 (in Chinese).
[14] 刘秀丽. 涡流法对不同厚度隔层下裂纹检出概率的测试研究[J]. 航空学报, 1998, 19(4):106-109. LIU X L. Study on crack inspection probability by using eddy current under different thickness cover layers[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(4):106-109 (in Chinese).
[15] NEWMAN S T, ZHU Z, DHOKIA V, et al. Process planning for additive and subtractive manufacturing technologies[J]. CIRP Annals-Manufacturing Technology, 2015, 64(1):467-470.
[16] BOWLER J R. Eddy-current interaction with an ideal crack. I. The forward problem[J]. Journal of Applied Physics, 1994, 75(12):8128-8137.
[17] 陈德智. 涡流无损检测中数值模拟与信号处理的研究[D]. 西安:西安交通大学, 1998:32-33. CHEN D Z. Study of numerical simulation and signal processing for eddy current nondestructive testing[D]. Xi'an:Xi'an Jiaotong University, 1998:32-33 (in Chinese).
[18] 江莉. 压气机叶片原位涡流检测技术的研究[D]. 南昌:南昌航空大学, 2011:30-35. JIANG L. Technology research on in-situ eddy current testing of compressor blade[D]. Nanchang:Nanchang Hang Kong University, 2011:30-35 (in Chinese).
[19] 刘鹏程. 工程电磁场简明手册[M]. 北京:高等教育出版社, 1991:140-144. LIU P C. Engineering electromagnetics handbook[M]. Beijing:Higher Education Press, 1991:140-144 (in Chinese).
[20] 王蔷,李定国,龚克. 电磁场理论基础[M]. 北京:清华大学出版社, 2001:121-122. WANG Q, LI D G, GONG K. Fundamentals of electromagnetics theory[M]. Beijing:Tsinghua University Press, 2001:121-122 (in Chinese).
[21] 雷银照. 三维探伤涡流场及其逆问题的研究[D]. 北京:清华大学, 1995:51-71. LEI Y Z. The study of 3-dimensionla eddy current field and its inverse problems in nondestructive testing[D]. Beijing:Tsinghua University, 1995:51-71 (in Chinese).
[22] YU Y T, YAN Y, WANG F, et al. An approach to reduce lift-off noise in pulsed eddy current nondestructive technology[J]. NDT & E International, 2014, 63(4):1-6.
[23] 关佳. 基于脉冲涡流无损检测方法的结构缺陷识别实验研究[D]. 成都:电子科技大学, 2013:31-32. GUAN J. The experimental investigation on structural defect identification based on pulsed eddy current non-destructive testing method[D]. Chengdu:University of Electronic Science and Technology of China, 2013:31-32 (in Chinese).
[24] 许万忠. 低频涡流技术的应用[J]. 无损检测, 1996(8):227-231. XU W Z. Application of low-frequency eddy current technique[J]. Nondestructive Testing, 1996(8):227-231 (in Chinese).
Outlines

/