Material Engineering and Mechanical Manufacturing

Eddy current testing of internal defect in additive/subtractive hybrid manufacturing

  • WANG Longqun ,
  • ZHANG Bi ,
  • PENG Ying ,
  • XIE Guoyin ,
  • BAI Qian ,
  • WANG Yibo
Expand
  • 1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China;
    2. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
    3. Technology Center, Xi'an Aero Engine Ltd., Aero Engine Corporation of China, Xi'an 710021, China

Received date: 2019-05-20

  Revised date: 2019-11-01

  Online published: 2019-10-31

Supported by

National Natural Science Foundation of China (51605077); Fundamental Research Layout of Shenzhen (JCYJ20170817111811303); Collaborative Innovation Program of Shenzhen (GJHZ20180411143506667)

Abstract

Eddy Current Testing (ECT) technology is suitable for the complex processing environment of Additive/Subtractive Hybrid Manufacturing (ASHM) due to its non-contact, couplant-free and high-sensitive features. An analytical model is established to calculate the internal current distribution of the semi-infinite sample without defects. A titanium alloy sample with internal artificial-defects is fabricated by ASHM and the ECT experiments are conducted on it to study the effect of the excitation frequency and the lift-off distance on the testing depth. Both the theoretical and experimental results show that for a deep internal defect, a lower excitation frequency leads to a larger reactance increment signal and the lift-off distance has little effect on the reactance increment signal. The study concludes that the optimal excitation frequency of ECT is 90 kHz, and the optimal lift-off distance is 0.97 mm. The conclusion provides a theoretical foundation for the integration of ASHM and ECT.

Cite this article

WANG Longqun, ZHANG Bi, PENG Ying, XIE Guoyin, BAI Qian, WANG Yibo. Eddy current testing of internal defect in additive/subtractive hybrid manufacturing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 423170-423170. DOI: 10.7527/S1000-6893.2019.23170

References

[1] KARUNAKARAN K P, SURYAKUMAR S, PUSHPA V, et al. Low cost integration of additive and subtractive processes for hybrid layered manufacturing[J]. Robotics & Computer Integrated Manufacturing, 2010, 26(5):490-499.
[2] DU W, BAI Q, WANG Y B, et al. Eddy current detection of subsurface defects for additive/subtractive hybrid manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9-12):3185-3195.
[3] MASUO H, TANAKA Y, MOROKOSHI S, et al. Effects of defects, surface roughness and HIP on fatigue strength of Ti-6Al-4V manufactured by additive manufacturing[J]. Procedia Structural Integrity, 2017, 7:19-26.
[4] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698 (in Chinese).
[5] 杨平华,高祥熙,梁菁,等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45(9):13-21. YANG P H, GAO X X, LIANG J, et al. Development tread and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45(9):13-21 (in Chinese).
[6] 凌松. 增材制造技术及其制品的无损检测进展[J]. 无损检测, 2016, 38(6):60-64. LING S. Additive manufacture technique and related NDT for its products[J]. Nondestructive Testing,2016, 38(6):60-64 (in Chinese).
[7] HIRSCH M, CATCHPOLESMITH S, PATEL R, et al. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy[J]. Proceedings Mathematical Physical & Engineering Sciences, 2017, 473(2205):20170194.
[8] RIEDER H, DILLHOFER A, SPIES M, et al. Online monitoring of additive manufacturing processes using ultrasound[C]//11th European Conference on Non-Destructive Testing, 2014:6-10.
[9] ZANINI F, HERMANEK P, PATHORE J, et al. Investigation on the accuracy of CT porosity analysis of additive manufactured metallic parts[C]//Digital Industrial Radiology and Computed Tomography, 2015.
[10] 孙钟,李全育,刁海波,等. 温度对超声波检测缺陷定位定量的影响[J]. 无损检测, 2011, 33(4):26-29. SUN Z, LI Q Y, DIAO H B, et al. Temperature effect on quantitative ultrasonic testing of defects[J]. Nondestructive Testing, 2011, 33(4):26-29 (in Chinese).
[11] 李世虎. 工业CT重建算法加速及三维可视化技术[D].太原:中北大学, 2016:3-5. LI S H. Industrial CT reconstruction algorithm acceleration and 3D visualization technology[D]. Taiyuan:North University of China, 2016:3-5 (in Chinese).
[12] 任吉林,林俊明,徐可北. 涡流检测[M]. 北京:机械工业出版社, 2013:1-4. REN J L, LIN J M, XU K B. Eddy current detection[M]. Beijing:China Machine Press, 2013:1-4 (in Chinese).
[13] 宋凯,刘堂先,李来平,等. 航空发动机涡轮叶片裂纹的阵列涡流检测仿真[J]. 航空学报, 2014, 35(8):2355-2363. SONG K, LIU T X, LI L P, et al. Simulation on aero-engine turbine blade cracks detection based on eddy current array[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2355-2363 (in Chinese).
[14] 刘秀丽. 涡流法对不同厚度隔层下裂纹检出概率的测试研究[J]. 航空学报, 1998, 19(4):106-109. LIU X L. Study on crack inspection probability by using eddy current under different thickness cover layers[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(4):106-109 (in Chinese).
[15] NEWMAN S T, ZHU Z, DHOKIA V, et al. Process planning for additive and subtractive manufacturing technologies[J]. CIRP Annals-Manufacturing Technology, 2015, 64(1):467-470.
[16] BOWLER J R. Eddy-current interaction with an ideal crack. I. The forward problem[J]. Journal of Applied Physics, 1994, 75(12):8128-8137.
[17] 陈德智. 涡流无损检测中数值模拟与信号处理的研究[D]. 西安:西安交通大学, 1998:32-33. CHEN D Z. Study of numerical simulation and signal processing for eddy current nondestructive testing[D]. Xi'an:Xi'an Jiaotong University, 1998:32-33 (in Chinese).
[18] 江莉. 压气机叶片原位涡流检测技术的研究[D]. 南昌:南昌航空大学, 2011:30-35. JIANG L. Technology research on in-situ eddy current testing of compressor blade[D]. Nanchang:Nanchang Hang Kong University, 2011:30-35 (in Chinese).
[19] 刘鹏程. 工程电磁场简明手册[M]. 北京:高等教育出版社, 1991:140-144. LIU P C. Engineering electromagnetics handbook[M]. Beijing:Higher Education Press, 1991:140-144 (in Chinese).
[20] 王蔷,李定国,龚克. 电磁场理论基础[M]. 北京:清华大学出版社, 2001:121-122. WANG Q, LI D G, GONG K. Fundamentals of electromagnetics theory[M]. Beijing:Tsinghua University Press, 2001:121-122 (in Chinese).
[21] 雷银照. 三维探伤涡流场及其逆问题的研究[D]. 北京:清华大学, 1995:51-71. LEI Y Z. The study of 3-dimensionla eddy current field and its inverse problems in nondestructive testing[D]. Beijing:Tsinghua University, 1995:51-71 (in Chinese).
[22] YU Y T, YAN Y, WANG F, et al. An approach to reduce lift-off noise in pulsed eddy current nondestructive technology[J]. NDT & E International, 2014, 63(4):1-6.
[23] 关佳. 基于脉冲涡流无损检测方法的结构缺陷识别实验研究[D]. 成都:电子科技大学, 2013:31-32. GUAN J. The experimental investigation on structural defect identification based on pulsed eddy current non-destructive testing method[D]. Chengdu:University of Electronic Science and Technology of China, 2013:31-32 (in Chinese).
[24] 许万忠. 低频涡流技术的应用[J]. 无损检测, 1996(8):227-231. XU W Z. Application of low-frequency eddy current technique[J]. Nondestructive Testing, 1996(8):227-231 (in Chinese).

/