Review

Review of numerical research on unsteady flows of the new generation fighters

  • XIAO Zhixiang ,
  • CUI Wenyao ,
  • LIU Jian ,
  • LUO Kunyu ,
  • SUN Yuanhao
Expand
  • School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Received date: 2019-09-10

  Revised date: 2019-10-03

  Online published: 2019-10-24

Supported by

National Key Project (GJXM92579);National Natural Science Foundation of China (91952302,11772174,91852113);National Key Research and Development Program of China (2019YFA0405300)

Abstract

The new generation fighters emphasize the super-maneuverability and high stealthy properties. The static stall and dynamic stall at high angles of attack and unsteady air-loads around the embedded weapon bay at supersonic speed are very challenging. The high accuracy and efficiency numerical simulations are urgently required. To simulate the flowfields accurately, clearly explore the flow mechanisms and effectively control the unsteady airloads, it’s required to develop the highly accurate and efficient Reynolds-Averaged Navier-Stokes and Large Eddy Simulation (RANS-LES) hybrid model, including the model itself, the coupled high-order adaptive dissipation scheme, fundamental turbulence model, high quality computational grids, high-order time marching method, the statistical method of unsteady flow, and so on. This kind of RANS-LES hybrid model has been proposed, developed, validated and applied to the new-generation fighters, including the single component, junctions, even complete fighters. After comparing with the measurements, the numerical simulations perform very well, including the mean forces, and the pressure fluctuations. Therefore, the RANS-LES hybrid model can provide the theoretical basis and analyzing tools for the new-generation fighter design.

Cite this article

XIAO Zhixiang , CUI Wenyao , LIU Jian , LUO Kunyu , SUN Yuanhao . Review of numerical research on unsteady flows of the new generation fighters[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(6) : 523451 -523451 . DOI: 10.7527/S1000-6893.2019.23451

References

[1] SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21:252-263.
[2] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS-LES approach[C]//First AFOSR International Conference on DNS-LES. Columbus:Greyden Press, 1997.
[3] STRELETS M. Detached eddy simulation of massively separated flows[C]//39th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001.
[4] MENTER F R, KUNTZ M, BENDER R. A scale-adaptive simulation model for turbulent flow predictions[C]//41st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003.
[5] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theory Computation Fluid Dynamic, 2006, 20:181-195.
[6] SHUR M L, SPALART P R, STRELETS M, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29:1638-1649.
[7] LIU J, ZHU W Q, XIAO Z X, et al. DDES with adaptive coefficient for stalled flows past a wind turbine airfoil[J]. Energy, 2018, 161:846-858.
[8] 朱文庆,肖志祥,符松,使用IDDES方法预测飞行速度对喷流噪声的影响[J]. 空气动力学学报, 2018, 36(3):463-469. ZHU W Q, XIAO Z X, FU S. Effects of flight velocity on jet noise predicted by IDDES method[J]. Acta Aerodynamica Sinica, 2018, 36(3):463-469(in Chinese).
[9] XIAO Z X, LIU J, HUANG J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5):1119-1136.
[10] XIAO L H, XIAO Z X, DUAN Z W, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150.
[11] WANG G X, YANG M C, XIAO Z X, et al. Improved k-ω-γ transition model by introducing the local effects of nose bluntness for hypersonic heat transfer[J]. International Journal of Heat and Mass Transfer, 2018, 119:185-198.
[12] XIAO Z X, CHEN H X, FU S. Computations with k-g model for complex configurations at high-incidence[J]. Journal of Aircraft, 2005, 42(2):462-468.
[13] 孙元昊. 减速板控制新一代战斗机大攻角俯仰力矩研究[D]. 北京:清华大学,2017. SUN Y H. Research of fighter's pitching moment controlled by air-brake ta high angle-of-attack[D]. Beijing:Tsinghua University, 2017(in Chinese).
[14] CUI W Y, LIU J, SUN Y H, et al. Airbrake controls of pitching moment and pressure fluctuation for an oblique tail fighter model[J]. Aerospace Science and Technology, 2018, 81:294-305.
[15] MORTON S A, CUMMINGS R M, KHOLODAR D B. High resolution turbulence treatment of F/A-18 tail buffet[J]. Journal of Aircraft, 2007, 44(6):1769-1775.
[16] FORSYTHE J R, WOODSON S H. Unsteady computations of abrupt wing stall using detached-eddy simulation[J]. Journal of Aircraft, 2005, 42(3):606-616.
[17] JEANS T L, MCDANIEL D R, CUMMINGS R M. Aerodynamic analysis of a generic fighter using delayed detached-eddy simulation[J]. Journal of Aircraft, 2009, 46(4):1326-1339.
[18] RIZZI A, LUCKRING J M. What was learned in predicting slender airframe aerodynamics with the F-16XL aircraft[J]. Journal of Aircraft, 2017, 54(2):444-455.
[19] ZHANG Y, ZHANG L P, HE X, et al. Detached eddy simulation of complex separation flows over a modern fighter model at high angle of attack[J]. Communications in Computational Physics, 2017, 22(5):1309-1332.
[20] 孟德虹,孙岩,王运涛,等. 战斗机垂尾脉动压力数值模拟[J],航空学报,2016,37(8):2472-2480. MENG D H, SUN Y, WANG Y T, et al. Numerical simulation of fluctuating pressure of fighter vertical tail[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2472-2480(in Chinese).
[21] XU G L, JIANG X, LIU G. Delayed detached eddy simulations of fighter aircraft at high angle of attack[J]. Acta Mechanica Sinica, 2016, 32(4):588-603.
[22] 赵子杰, 高超, 张正科. 涡破裂诱导的垂尾抖振气动弹性分析[J]. 航空学报, 2016, 37(2):491-503. ZHAO Z J, GAO C, ZHANG Z K. Aeroelastic analysis of vertical tail buffeting induced by vortex breakdown[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):491-503(in Chinese).
[23] NGUYEN L T, OGBURN M E, GILBERT W P, et al. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability:NASA-TP-1538[R]. Washington, D.C.:NASA, 1979.
[24] MASON W H. Configuration aerodynamics[D]. Blacksburg:Virginia Polytechnic Institute and State University, 2006.
[25] LEMAY S P, SEWALL W G, HENDERSON J F. Forebody vortex flow control on the F-16C using tangential slot and jet nozzle blowing[C]//30th Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 1992.
[26] CARR P C, GILBERT W P. Effects of fuselage forebody geometry on low-speed lateral-directional characteristics of twin-tail fighter model at high angles of attack:NASA-TP-1979[R]. Washington, D.C.:NASA, 1952.
[27] BUCKNER J K, HILL P W, BENEPE D. Aerodynamic design evolution of the YF-16[C]//AIAA 6th Aircraft Design, Flight Test and Operations Meeting. Reston:AIAA, 1974.
[28] SHAH G H. Wind-tunnel investigation of aerodynamic and tail buffet characteristics of leading-edge extension modifications to the F/A-18[C]//1991 Atmospheric Flight Mechanics Conference. Reston:AIAA, 1991.
[29] ANDERSON W D, PATEL S R, BLACK C L. Low-speed wind tunnel buffet testing on the F-22[J]. Journal of Aircraft, 2006, 43(4):879-885.
[30] SHETA E F. Alleviation of vertical tail buffeting of F/A-18 aircraft[J]. Journal of Aircraft, 2004, 41(2):322-330.
[31] 齐孟卜, 陈明岩. 减速板对水平尾翼的干扰研究[J]. 南京航空航天大学学报,1997, 29(3):317-320. QI M B, CHEN M Y. On the research of interactions of drag plate the tail[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1997, 29(3):317-320(in Chinese)
[32] DONG C, WANG Y K, DENG X Y, et al. Investigation of flow characteristics over the fuselage airbrake[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):42-49.
[33] MOIGNE Y L, RIZZI A, JOHANSSON P. CFD simulations of a delta wing in high-alpha pitch oscillations[C]//39th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001.
[34] VISBAL M R. Onset of vortex breakdown above a pitching delta wing[J]. AIAA Journal, 1994, 32(8):1568-1575.
[35] VISBAL M R, GORDNIER R E. Parametric effects on vortex breakdown over a pitching delta wing[C]//32nd Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1994.
[36] EKATERINARIS J A, SCHIFF L B. Navier-Stokes solutions for an oscillating double-delta wing[J]. Journal of Aircraft, 1995, 32(2):228-234.
[37] LIU J, SUN H S, HUANG Y, et al. Numerical investigation of an advanced aircraft model during pitching motion at high incidence[J]. Science China, Technological Sciences, 2016, 59(2):276-288.
[38] SRINIVAS S, GURSUL I, BATH G. Active control of vortex breakdown over delta wings[C]//25th AIAA Fluid Dynamics Conference. Reston:AIAA, 1994.
[39] GURSUL I. Proposed mechanism for time lag of vortex breakdown location in unsteady flows[J]. Journal of Aircraft, 2000, 37(4):733-736.
[40] COTON F N, JUPP M L, GREEN R B. Analysis of unsteady pressure signals on a pitching delta wing[J]. AIAA Journal, 2001, 39(9):1750-1757.
[41] RONCH A D, VALLESPIN D, GHOREYSHI M, et al. Evaluation of dynamic derivatives using computational fluid dynamics[J]. AIAA Journal, 2012, 50(2):470-484.
[42] LIU J, LUO K Y, SUN H S, et al. Dynamic response of vortex breakdown flows to a pitching double-delta wing[J]. Aerospace Science and Technology, 2018, 72:564-577.
[43] XU G L, LIU G, JIANG X, et al. Effect of pitch down motion on the vortex reformation over fighter aircraft[J]. Aerospace Science and Technology, 2018, 73:278-288.
[44] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3):186-216.
[45] LIGGETT N D, SMITH M J. Cavity flow assessment using advanced turbulence methods[J]. Journal of Aircraft, 2011, 48(1):141-156.
[46] TEMMERMAN L, TARTINVILLE B, HIRSCH C. URANS investigation of the transonic M219 cavity[C]//Progress in Hybrid RANS-LES Modelling. Berlin:Springer, 2012.
[47] WANG H, SUN M, QIN N, et al. Characteristics of oscillations in supersonic open cavity flows[J]. Flow, Turbulence and Combustion, 2013, 90(1):121-142.
[48] ARUNAJATESAN S, BARONE M F, WAGNER J L, et al. Joint experimental/computational investigation into the effects of finite width on transonic cavity flow[C]//32nd AIAA Applied Aerodynamics Conference. Reston:AIAA, 2014.
[49] BABU S V, ZOGRAFAKIS G, BARAKOS G N, et al. Evaluation of scale-adaptive simulations for transonic cavity flows[J]. Notes on Numerical Fluid Mechanics & Multidisciplinary Design, 2015, 130(2):433-444.
[50] SHETA E F, HARRIS R E, LUKE E A, et al. Hybrid RANS/LES acoustics prediction in supersonic weapons cavity[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
[51] HASSAN E A, PETERSON D M, WALTERS K, et al. Dynamic hybrid RANS/LES computations of a supersonic cavity[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016.
[52] LAWSON S J, BARAKOS G N. Computational fluid dynamics analyses of flow over weapons-bay geometries[J]. Journal of Aircraft, 2010, 47(5):1605-1623.
[53] LAWSON S J, BARAKOS G N. Evaluation of DES for weapons bays in UCAVs[J]. Aerospace Science and Technology, 2010, 14(6):397-414.
[54] KANNEPALLI C, CHARTRAND C, BIRKBECK R, et al. Computational modeling of geometrically complex weapons bays[C]//17th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2011.
[55] KHANAL B, KNOWLES K, SADDINGTON A J. Computational study of flowfield characteristics in cavities with stores[J]. Aeronautical Journal, 2011, 115(1173):669-681.
[56] CHAPLIN R, BIRCH T. The aero-acoustic environment within the weapons bay of a generic UCAV[C]//30th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2012.
[57] KIM D H, CHOI J H, KWON O J. Detached eddy simulation of weapons bay flows and store separation[J]. Computers & Fluids, 2015, 121:1-10.
[58] BARONE M, ARUNAJATESAN S. Pressure loadings in a rectangular cavity with and without a captive store[J]. Journal of Aircraft, 2016, 53(4):982-991.
[59] LUO K Y, WENG Z, XIAO Z X, et al. Improved delayed detached-eddy simulations of sawtooth spoiler control before supersonic cavity[J]. International Journal of Heat and Fluid Flow, 2017, 63:172-189.
[60] 罗堃宇.高速弹舱流动压力振荡模态及被动控制频谱特性研究[D]. 北京:清华大学,2017. LUO K Y. Investigations on pressure fluctuation modes in high-speed weapon bay flows and the spectral characteristics of passive control methods[D]. Beijing:Tsinghua University, 2017(in Chinese).
[61] ZHANG Y, ARORA N, SUN Y, et al. Suppression of cavity oscillations via three-dimensional steady blowing[C]//45th AIAA Fluid Dynamics Conference. Reston:AIAA, 2015.
[62] GEORGE B, UKEILEY L S, CATTAFESTA L N, et al. Control of three-dimensional cavity flow using leading-edge slot blowing[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
[63] YUGULIS K, HANSFORD S, GREGORY J W, et al. Control of high subsonic cavity flow using plasma actuators[J]. AIAA Journal, 2014, 52(7):1542-1554.
[64] DE JONG A, BIJL H. Corner-type plasma actuators for cavity flow-induced noise control[J]. AIAA Journal, 2014,52(1):33-42.
[65] GAI S L, KLEINE H, NEELY A J. Supersonic flow over a shallow open rectangular cavity[J]. Journal of Aircraft, 2015, 52(2):609-616.
[66] SHAABAN M, MOHANY A. Passive control of flow-excited acoustic resonance in rectangular cavities using upstream mounted blocks[J]. Experiments in Fluids, 2015, 56(4):72.
[67] DU DLEY J G, UKEILEY L. Passively controlled supersonic cavity flow using a spanwise cylinder[J]. Experiments in Fluids, 2014, 55(9):1810.
[68] SADDINGTON A J, KNOWLES K, THANGAMANI V. Scale effects on the performance of sawtooth spoilers in transonic rectangular cavity flow[J]. Experiments in Fluids, 2016, 57(1):1-12.
[69] VIKRAMADITYA N S, KURIAN J. Pressure oscillations from cavities with ramp[J]. AIAA Journal, 2009, 47(12):2974-2984.
[70] SADDINGTON A J, THANGAMANI V, KNOWLES K. Comparison of passive flow control methods for a cavity in transonic flow[J]. Journal of Aircraft, 2016, 53(5):1439-1447.
[71] COMTE P, DAUDE F, MARY I. Simulation of the reduction of unsteadiness in a passively controlled transonic cavity flow[J]. Journal of Fluids and Structures, 2008, 24(8):1252-1261.
[72] PANICKAR M B, MURRAY N E, JANSEN B J, et al. Reduction of noise generated by a half-open weapons bay[J]. Journal of Aircraft, 2013, 50(3):716-724.
[73] LUO K Y, ZHU W Q, XIAO Z X, et al. Investigation of spectral characteristics by passive control methods past a supersonic cavity[J]. AIAA Journal, 2018,56(7):2669-2686.
Outlines

/