[1] SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21:252-263.
[2] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS-LES approach[C]//First AFOSR International Conference on DNS-LES. Columbus:Greyden Press, 1997.
[3] STRELETS M. Detached eddy simulation of massively separated flows[C]//39th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001.
[4] MENTER F R, KUNTZ M, BENDER R. A scale-adaptive simulation model for turbulent flow predictions[C]//41st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003.
[5] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theory Computation Fluid Dynamic, 2006, 20:181-195.
[6] SHUR M L, SPALART P R, STRELETS M, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29:1638-1649.
[7] LIU J, ZHU W Q, XIAO Z X, et al. DDES with adaptive coefficient for stalled flows past a wind turbine airfoil[J]. Energy, 2018, 161:846-858.
[8] 朱文庆,肖志祥,符松,使用IDDES方法预测飞行速度对喷流噪声的影响[J]. 空气动力学学报, 2018, 36(3):463-469. ZHU W Q, XIAO Z X, FU S. Effects of flight velocity on jet noise predicted by IDDES method[J]. Acta Aerodynamica Sinica, 2018, 36(3):463-469(in Chinese).
[9] XIAO Z X, LIU J, HUANG J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5):1119-1136.
[10] XIAO L H, XIAO Z X, DUAN Z W, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150.
[11] WANG G X, YANG M C, XIAO Z X, et al. Improved k-ω-γ transition model by introducing the local effects of nose bluntness for hypersonic heat transfer[J]. International Journal of Heat and Mass Transfer, 2018, 119:185-198.
[12] XIAO Z X, CHEN H X, FU S. Computations with k-g model for complex configurations at high-incidence[J]. Journal of Aircraft, 2005, 42(2):462-468.
[13] 孙元昊. 减速板控制新一代战斗机大攻角俯仰力矩研究[D]. 北京:清华大学,2017. SUN Y H. Research of fighter's pitching moment controlled by air-brake ta high angle-of-attack[D]. Beijing:Tsinghua University, 2017(in Chinese).
[14] CUI W Y, LIU J, SUN Y H, et al. Airbrake controls of pitching moment and pressure fluctuation for an oblique tail fighter model[J]. Aerospace Science and Technology, 2018, 81:294-305.
[15] MORTON S A, CUMMINGS R M, KHOLODAR D B. High resolution turbulence treatment of F/A-18 tail buffet[J]. Journal of Aircraft, 2007, 44(6):1769-1775.
[16] FORSYTHE J R, WOODSON S H. Unsteady computations of abrupt wing stall using detached-eddy simulation[J]. Journal of Aircraft, 2005, 42(3):606-616.
[17] JEANS T L, MCDANIEL D R, CUMMINGS R M. Aerodynamic analysis of a generic fighter using delayed detached-eddy simulation[J]. Journal of Aircraft, 2009, 46(4):1326-1339.
[18] RIZZI A, LUCKRING J M. What was learned in predicting slender airframe aerodynamics with the F-16XL aircraft[J]. Journal of Aircraft, 2017, 54(2):444-455.
[19] ZHANG Y, ZHANG L P, HE X, et al. Detached eddy simulation of complex separation flows over a modern fighter model at high angle of attack[J]. Communications in Computational Physics, 2017, 22(5):1309-1332.
[20] 孟德虹,孙岩,王运涛,等. 战斗机垂尾脉动压力数值模拟[J],航空学报,2016,37(8):2472-2480. MENG D H, SUN Y, WANG Y T, et al. Numerical simulation of fluctuating pressure of fighter vertical tail[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2472-2480(in Chinese).
[21] XU G L, JIANG X, LIU G. Delayed detached eddy simulations of fighter aircraft at high angle of attack[J]. Acta Mechanica Sinica, 2016, 32(4):588-603.
[22] 赵子杰, 高超, 张正科. 涡破裂诱导的垂尾抖振气动弹性分析[J]. 航空学报, 2016, 37(2):491-503. ZHAO Z J, GAO C, ZHANG Z K. Aeroelastic analysis of vertical tail buffeting induced by vortex breakdown[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):491-503(in Chinese).
[23] NGUYEN L T, OGBURN M E, GILBERT W P, et al. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability:NASA-TP-1538[R]. Washington, D.C.:NASA, 1979.
[24] MASON W H. Configuration aerodynamics[D]. Blacksburg:Virginia Polytechnic Institute and State University, 2006.
[25] LEMAY S P, SEWALL W G, HENDERSON J F. Forebody vortex flow control on the F-16C using tangential slot and jet nozzle blowing[C]//30th Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 1992.
[26] CARR P C, GILBERT W P. Effects of fuselage forebody geometry on low-speed lateral-directional characteristics of twin-tail fighter model at high angles of attack:NASA-TP-1979[R]. Washington, D.C.:NASA, 1952.
[27] BUCKNER J K, HILL P W, BENEPE D. Aerodynamic design evolution of the YF-16[C]//AIAA 6th Aircraft Design, Flight Test and Operations Meeting. Reston:AIAA, 1974.
[28] SHAH G H. Wind-tunnel investigation of aerodynamic and tail buffet characteristics of leading-edge extension modifications to the F/A-18[C]//1991 Atmospheric Flight Mechanics Conference. Reston:AIAA, 1991.
[29] ANDERSON W D, PATEL S R, BLACK C L. Low-speed wind tunnel buffet testing on the F-22[J]. Journal of Aircraft, 2006, 43(4):879-885.
[30] SHETA E F. Alleviation of vertical tail buffeting of F/A-18 aircraft[J]. Journal of Aircraft, 2004, 41(2):322-330.
[31] 齐孟卜, 陈明岩. 减速板对水平尾翼的干扰研究[J]. 南京航空航天大学学报,1997, 29(3):317-320. QI M B, CHEN M Y. On the research of interactions of drag plate the tail[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1997, 29(3):317-320(in Chinese)
[32] DONG C, WANG Y K, DENG X Y, et al. Investigation of flow characteristics over the fuselage airbrake[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):42-49.
[33] MOIGNE Y L, RIZZI A, JOHANSSON P. CFD simulations of a delta wing in high-alpha pitch oscillations[C]//39th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001.
[34] VISBAL M R. Onset of vortex breakdown above a pitching delta wing[J]. AIAA Journal, 1994, 32(8):1568-1575.
[35] VISBAL M R, GORDNIER R E. Parametric effects on vortex breakdown over a pitching delta wing[C]//32nd Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1994.
[36] EKATERINARIS J A, SCHIFF L B. Navier-Stokes solutions for an oscillating double-delta wing[J]. Journal of Aircraft, 1995, 32(2):228-234.
[37] LIU J, SUN H S, HUANG Y, et al. Numerical investigation of an advanced aircraft model during pitching motion at high incidence[J]. Science China, Technological Sciences, 2016, 59(2):276-288.
[38] SRINIVAS S, GURSUL I, BATH G. Active control of vortex breakdown over delta wings[C]//25th AIAA Fluid Dynamics Conference. Reston:AIAA, 1994.
[39] GURSUL I. Proposed mechanism for time lag of vortex breakdown location in unsteady flows[J]. Journal of Aircraft, 2000, 37(4):733-736.
[40] COTON F N, JUPP M L, GREEN R B. Analysis of unsteady pressure signals on a pitching delta wing[J]. AIAA Journal, 2001, 39(9):1750-1757.
[41] RONCH A D, VALLESPIN D, GHOREYSHI M, et al. Evaluation of dynamic derivatives using computational fluid dynamics[J]. AIAA Journal, 2012, 50(2):470-484.
[42] LIU J, LUO K Y, SUN H S, et al. Dynamic response of vortex breakdown flows to a pitching double-delta wing[J]. Aerospace Science and Technology, 2018, 72:564-577.
[43] XU G L, LIU G, JIANG X, et al. Effect of pitch down motion on the vortex reformation over fighter aircraft[J]. Aerospace Science and Technology, 2018, 73:278-288.
[44] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3):186-216.
[45] LIGGETT N D, SMITH M J. Cavity flow assessment using advanced turbulence methods[J]. Journal of Aircraft, 2011, 48(1):141-156.
[46] TEMMERMAN L, TARTINVILLE B, HIRSCH C. URANS investigation of the transonic M219 cavity[C]//Progress in Hybrid RANS-LES Modelling. Berlin:Springer, 2012.
[47] WANG H, SUN M, QIN N, et al. Characteristics of oscillations in supersonic open cavity flows[J]. Flow, Turbulence and Combustion, 2013, 90(1):121-142.
[48] ARUNAJATESAN S, BARONE M F, WAGNER J L, et al. Joint experimental/computational investigation into the effects of finite width on transonic cavity flow[C]//32nd AIAA Applied Aerodynamics Conference. Reston:AIAA, 2014.
[49] BABU S V, ZOGRAFAKIS G, BARAKOS G N, et al. Evaluation of scale-adaptive simulations for transonic cavity flows[J]. Notes on Numerical Fluid Mechanics & Multidisciplinary Design, 2015, 130(2):433-444.
[50] SHETA E F, HARRIS R E, LUKE E A, et al. Hybrid RANS/LES acoustics prediction in supersonic weapons cavity[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
[51] HASSAN E A, PETERSON D M, WALTERS K, et al. Dynamic hybrid RANS/LES computations of a supersonic cavity[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016.
[52] LAWSON S J, BARAKOS G N. Computational fluid dynamics analyses of flow over weapons-bay geometries[J]. Journal of Aircraft, 2010, 47(5):1605-1623.
[53] LAWSON S J, BARAKOS G N. Evaluation of DES for weapons bays in UCAVs[J]. Aerospace Science and Technology, 2010, 14(6):397-414.
[54] KANNEPALLI C, CHARTRAND C, BIRKBECK R, et al. Computational modeling of geometrically complex weapons bays[C]//17th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2011.
[55] KHANAL B, KNOWLES K, SADDINGTON A J. Computational study of flowfield characteristics in cavities with stores[J]. Aeronautical Journal, 2011, 115(1173):669-681.
[56] CHAPLIN R, BIRCH T. The aero-acoustic environment within the weapons bay of a generic UCAV[C]//30th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2012.
[57] KIM D H, CHOI J H, KWON O J. Detached eddy simulation of weapons bay flows and store separation[J]. Computers & Fluids, 2015, 121:1-10.
[58] BARONE M, ARUNAJATESAN S. Pressure loadings in a rectangular cavity with and without a captive store[J]. Journal of Aircraft, 2016, 53(4):982-991.
[59] LUO K Y, WENG Z, XIAO Z X, et al. Improved delayed detached-eddy simulations of sawtooth spoiler control before supersonic cavity[J]. International Journal of Heat and Fluid Flow, 2017, 63:172-189.
[60] 罗堃宇.高速弹舱流动压力振荡模态及被动控制频谱特性研究[D]. 北京:清华大学,2017. LUO K Y. Investigations on pressure fluctuation modes in high-speed weapon bay flows and the spectral characteristics of passive control methods[D]. Beijing:Tsinghua University, 2017(in Chinese).
[61] ZHANG Y, ARORA N, SUN Y, et al. Suppression of cavity oscillations via three-dimensional steady blowing[C]//45th AIAA Fluid Dynamics Conference. Reston:AIAA, 2015.
[62] GEORGE B, UKEILEY L S, CATTAFESTA L N, et al. Control of three-dimensional cavity flow using leading-edge slot blowing[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
[63] YUGULIS K, HANSFORD S, GREGORY J W, et al. Control of high subsonic cavity flow using plasma actuators[J]. AIAA Journal, 2014, 52(7):1542-1554.
[64] DE JONG A, BIJL H. Corner-type plasma actuators for cavity flow-induced noise control[J]. AIAA Journal, 2014,52(1):33-42.
[65] GAI S L, KLEINE H, NEELY A J. Supersonic flow over a shallow open rectangular cavity[J]. Journal of Aircraft, 2015, 52(2):609-616.
[66] SHAABAN M, MOHANY A. Passive control of flow-excited acoustic resonance in rectangular cavities using upstream mounted blocks[J]. Experiments in Fluids, 2015, 56(4):72.
[67] DU DLEY J G, UKEILEY L. Passively controlled supersonic cavity flow using a spanwise cylinder[J]. Experiments in Fluids, 2014, 55(9):1810.
[68] SADDINGTON A J, KNOWLES K, THANGAMANI V. Scale effects on the performance of sawtooth spoilers in transonic rectangular cavity flow[J]. Experiments in Fluids, 2016, 57(1):1-12.
[69] VIKRAMADITYA N S, KURIAN J. Pressure oscillations from cavities with ramp[J]. AIAA Journal, 2009, 47(12):2974-2984.
[70] SADDINGTON A J, THANGAMANI V, KNOWLES K. Comparison of passive flow control methods for a cavity in transonic flow[J]. Journal of Aircraft, 2016, 53(5):1439-1447.
[71] COMTE P, DAUDE F, MARY I. Simulation of the reduction of unsteadiness in a passively controlled transonic cavity flow[J]. Journal of Fluids and Structures, 2008, 24(8):1252-1261.
[72] PANICKAR M B, MURRAY N E, JANSEN B J, et al. Reduction of noise generated by a half-open weapons bay[J]. Journal of Aircraft, 2013, 50(3):716-724.
[73] LUO K Y, ZHU W Q, XIAO Z X, et al. Investigation of spectral characteristics by passive control methods past a supersonic cavity[J]. AIAA Journal, 2018,56(7):2669-2686.