[1] FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6-7):467-488.
[2] DEUTSCH D. Quantum theory, the Church-Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society A:Mathematical and Physical Sciences, 1985, 400(1818):97-117.
[3] DEUTSCH D,JOZSA R. Rapid solution of problems by quantum computation[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1992, 439(1907):553-558.
[4] SHOR P W. Algorithms for quantum computation:Discrete logarithms and factoring[C]//Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994:124-134.
[5] GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the 28th Annual ACM Symposium on the Theory of Computing. New York:ACM, 1996:212-219.
[6] LONG G L. Grover algorithm with zero theoretical failure rate[J]. Physical Review A, 2001, 64(2):022307.
[7] CASTAGNOLI G. Highlighting the mechanism of the quantum speedup by time-symmetric and relational quantum mechanics[J]. Foundations of Physics, 2016, 46(3):360-381.
[8] HARROW A, HASSIDIM A, LLOYD S. Quantum algorithm for linear systems of equations[J]. Physical Review Letters, 2009, 103(15):150502.
[9] IBM Q system[EB/OL].(2019-08-02)[2019-08-13]. http://www.research.ibm.com/ibm-q/system-one/.
[10] 林落.世界首台光量子计算机诞生[J].科学新闻, 2018(1):23-24. LIN L. The first photon quantum computer[J]. Science News, 2018(1):23-24(in Chinese).
[11] 孙晓明.量子计算若干前沿问题综述[J].中国科学:信息科学, 2016, 46(8):982-1002. SUN X M. A survey on quantum computing[J]. Scientia Sinica Informationis, 2016, 46(8):982-1002(in Chinese).
[12] WU J, LIU Y, ZHANG B, et al. A benchmark test of boson sampling on Tianhe-2 supercomputer[J]. National Science Review, 2018, 5(5):715-720.
[13] 许文琪.国外量子信息技术发展分析[J].国防科技工业,2019(5):46-48. XU W Q. Analysis on the development of foreign quantum information technology[J]. Defence Science&Technology Industry, 2019(5):46-48(in Chinese).
[14] 张来平,邓小刚,何磊,等. E级计算给CFD带来的机遇与挑战[J].空气动力学学报, 2016, 34(4):405-417. ZHANG L P, DENG X G, HE L, et al. The opportunity and grand challenges in computational fluid dynamics by exascale computing[J]. Acta Aerodynamica Sinica, 2016, 34(4):405-417(in Chinese).
[15] STEIJL R, BARAKOS G N. Parallel evaluation of quantum algorithms for computational fluid dynamics[J]. Computers and Fluids, 2018, 173:22-28.
[16] BENENTI G, CASATI G, STRINI G. Principles of quantum computation and information I[M]. Singapore:World Scientific Publishing Co. Pte. Ltd, 2004:75-143.
[17] 李明,陈宗海.量子计算机——未来二十年的挑战[C]//2006年系统仿真及其应用学术交流会论文集.合肥:中国科学技术大学出版社, 2006:833-839. LI M, CHEN Z H. Quantum computers-The challenges in the next twenty years[C]//Proceedings of the 2006 System Simulation and Application. Hefei:China University of Science and Technology Press, 2006:833-839(in Chinese).
[18] 张焕国,毛少武,吴万青,等.量子计算复杂性理论综述[J].计算机学报, 2016, 39(12):2403-2428. ZHANG H G, MAO S W, WU W Q, et al. Overview of quantum computation complexity theory[J]. Chinese Journal of Computers, 2016, 39(12):2403-2428(in Chinese).
[19] DEUTSCH D. Quantum computational networks[J]. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences, 1989, 425(1868):73-90.
[20] YAO A C-C. Quantum circuit complexity[C]//Proceedings of the 34th Symposium on Foundations of Computer Science, 1993:352-361.
[21] COPPERSMITH D. An approximate fourier transform useful in quantum factoring:RC 19642[R]. New York:IBM Research Division, 1994.
[22] MASHHADI S. General secret sharing based on quantum Fourier transform[J]. Quantum Information Processing, 2019, 18:114.
[23] MOORE G E. Progress in digital integrated electronics[J]. IEEE Solid-State Circuits Newsletter, 2006, 20(3):36-37.
[24] DESAI S B, MADHVAPATHY S R, SACHID A B, et al. MoS2 transistors with 1-nanometer gate lengths[J]. Science, 2016, 354(6308):99-102.
[25] SHENDE V V, PRASAD A K, MARKOV I L, et al. Synthesis of reversible logic circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2006, 22(6):710-722.
[26] YANG G, SONG X, HUNG W N N, et al. Bi-directional synthesis of 4-Bit rversible circuits[J]. Computer Journal, 2008, 51(2):207-215.
[27] AARONSON S, GOTTESMAN D. Improved simulation of stabilizer circuits[J]. Physical Review A, 2004, 70(5):052328.
[28] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte Der Physik, 2010, 48(9-11):771-783.
[29] 韩永建,李传锋,郭光灿.量子计算原理及研究进展[J].科技导报, 2017, 35(23):70-75. HAN Y J, LI C F, GUO G C. The principle and development of quantum computation[J]. Science&Technology Review, 2017, 35(23):70-75(in Chinese).
[30] IonQ homepage[EB/OL].(2019-08-15)[2019-09-07]. https://ionq.com/.
[31] CIRAC J I, ZOLLER P. Quantum computations with cold trapped ions[J]. Physical Review Letters, 1995, 74(20):4091.
[32] YE Y, GE Z Y, WU Y, et al. Propagation and localization of collective excitations on a 24-qubit superconducting processor[J]. Physical Review Letters, 2019, 123(5):050502.
[33] WU Z, ZHANG L, SUN W, et al. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates[J]. Science, 2016, 354(6308):83-88.
[34] STEINBRECHER G R, OLSON J P, ENGLUND D, et al. Quantum optical neural networks[J]. NPJ Quantum Information, 2019, 5:60.
[35] 龙桂鲁,肖丽.核磁共振量子计算机与并行量子计算[J].物理与工程, 2003, 13(3):12-14,20. LONG G L, XIAO L. Nuclear magnetic resonance quantum computer and parallel quantum computing[J]. Physics and Engineering, 2003, 13(3):12-14,20(in Chinese).
[36] GERSHENFELD N A, CHUANG I L. Bulk spin-resonance quantum computation[J]. Science, 1997, 275(5298):350-356.
[37] Honeywell quantum solutions[EB/OL].(2019-08-19)[2019-09-10]. https://www.honeywell.com/en-us/company/quantum.
[38] MASLOV D, NAM Y, KIM J. An outlook for quantum computing[J]. Proceedings of the IEEE, 2019, 107(1):5-10.
[39] QPU developed by rigetti computing[EB/OL].(2019-07-14)[2019-09-10]. https://www.rigetti.com/qpu.
[40] ALVAREZ-RODRIGUEZ U, SANZ M, LAMATA L, et al. Quantum artificial life in an ibm quantum computer[J]. Scientific Reports, 2018, 8:14793.
[41] FU X Q, BAO W S, HUANG H L, et al. Realization of t-bit semiclassical quantum Fourier transform on IBM's quantum cloud computer[J]. Chinese Physics B, 2019, 28(2):020302.
[42] 崔竞一,刘翼鹏,郭建胜.基于IBM量子计算云服务的量子傅里叶变换实现[J].信息技术与网络安全, 2019, 38(4):19-24. CUI J Y, LIU Y P, GUO J S. Implementation of quantum Fourier transform using IBM quantum computer on cloud[J]. Cryptography Technology and Application, 2019, 38(4):19-24(in Chinese).
[43] BEHERA B K, SETH S, DAS A, et al. Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer[J]. Quantum Information Processing, 2019, 18(4):125.
[44] MANDVIWALLA A, OHSHIRO K, JI B. Implementing grover's algorithm on the ibm quantum computers[C]//Proceedings of IEEE International Conference on Big Data, 2018:2531-2537.
[45] WANG H H, HE Y, LI Y H, et al. High-efficiency multiphoton boson sampling[J]. Nature Photonics, 2017, 11:361-365.
[46] CAI X D, WEEDBROOK C, SU Z E, et al. Experimental quantum computing to solve systems of linear equations[J]. Physical Review Letters, 2013, 110(23):230501.
[47] CAI X D, WU D, SU Z E, et al. Entanglement-based machine learning on a quantum computer[J]. Physical Review Letters, 2015, 114(11):110504.
[48] ZHENG Y, SONG C, CHEN M C, et al. Solving systems of linear equations with a superconducting quantum processor[J]. Physical Review Letters, 2017, 118(21):210504.
[49] National Academies of Sciences, Engineering, and Medicine. Quantum computing:Progress and prospects[M]. Washington, D.C.:The National Academies Press, 2019:1-252.
[50] TABUCHI Y, TAMATE S, NAKAMURA Y. Toward scalable superconducting quantum computer implementation[J]. IEICE Transactions on Electronics, 2019, E102-C (3):212-216.
[51] DYAKONOV M I. When will we have a quantum computer[J]. Solid State Electronics, 2019, 155:4-6.
[52] STEIGER D S, HNER T, TROYER M. Advantages of a modular high-level quantum programming framework[J]. Microprocessors and Microsystems, 2019, 66:81-89.
[53] ZENG W, JOHNSON B, SMITH R, et al. First quantum computers need smart software[J]. Nature, 2017, 549(7671):149-151.
[54] SHOR P W. Why haven't more quantum algorithms been found?[J]. Journal of the ACM, 2003, 50(1):87-90.
[55] SHAO C P, LI Y, LI H B. Quantum algorithm design:Techniques and applications[J]. Journal of Systems Science&Complexity, 2019, 32:375-452.
[56] KITAEV A. Quantum measurements and the abelian stabilizer problem[J]. Hep Websearch Hep, 1995, 3:1-22.
[57] LLOYD S, REBENTROST P, MOHSENI M. Quantum principal component analysis[J]. Nature Physics, 2014, 10:631-633.
[58] LONG G L. General quantum interference principle and duality computer[J]. Communications in Theoretical Physics, 2006, 45:825-844.
[59] CHILDS A M, WIEBE N. Hamiltonian simulation using linear combinations of unitary operations[J]. Quantum Information and Computation, 2012, 12:901-924.
[60] GILY N A, ARUNACHALAM S, WIEBE N. Optimizing quantum optimization algorithms via faster quantum gradient computation[C]//Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2019:1425-1444.
[61] KERENIDIS I, PRAKASH A. Quantum recommendation system[C]//Proceedings of 8th Innovations in Theoretical Computer Science Conference, 2017:49.
[62] WU N, HU H, SONG F, et al. Quantum software framework:A tentative study[J]. Frontiers of Computer Science, 2013, 7(3):341-349.
[63] TULSI A. General framework for quantum search algorithms[J]. Physical Review A, 2012, 86:042331.
[64] GAO X, NIELSEN E, MULLER R P, et al. The QCAD framework for quantum device modeling[C]//Proceedings of 15th International Workshop on Computational Electronics, 2012.
[65] JAVADIABHARI A, PATIL S, KUDROW D, et al. ScaffCC:Scalable compilation and analysis of quantum programs[J]. Parallel Computing, 2015, 45:2-17.
[66] AVILA A B D, REISER R H S, PILLA M L, et al. State-of-the-art quantum computing simulators:Features, optimizations, and improvements for D-GM[J]. Neurocomputing, 2019, https://doi.org/10.1016/j.neucom.2019.01.118[in press].
[67] 刘树森,周立,官极,等. Q|SI〉:一个量子程序设计环境[J].中国科学:信息科学, 2017, 47(10):1300-1315. LIU S S, ZHOU L, GUAN J, et al. Q|SI〉:A quantum programming environment[J]. Scientia Sinica Informationis, 2017, 47(10):1300-1315(in Chinese).
[68] STEIGER D S, HNER T, TROYER M. ProjectQ:An open source software framework for quantum computing[J]. Quantum, 2018, 2:49.
[69] Quantum computing environments HiQ[EB/OL].(2019-09-06)[2019-09-08]. https://www.huaweicloud.com/solution/hiq/index.html.
[70] Qurator VSCode extension[EB/OL].(2019-07-15)[2019-08-30]. https://marketplace.visualstudio.com/items?itemName=Qurator.qurator-vscode.
[71] Cirq[EB/OL].(2019-06-13)[2019-09-04]. https://github.com/quantumlib/cirq.
[72] OpenFermion[EB/OL].(2019-08-14)[2019-09-05]. https://github.com/quantumlib/OpenFermion.
[73] Quantum development kit[EB/OL].(2019-06-25)[2019-09-05]. https://www.microsoft.com/en-us/quantum/development-kit.
[74] Qiskit[EB/OL].(2019-08-20)[2019-09-05]. https://qiskit.org/.
[75] Quantum computing cloud[EB/OL].(2019-08-30)[2019-09-05]. http://quantumcomputer.ac.cn/.
[76] Origion quantum computing cloud service platform[EB/OL].(2019-09-01)[2019-09-05]. http://www.qubitonline.cn/.
[77] IBM Q experience[EB/OL].(2019-08-12)[2019-09-05]. https://www.research.ibm.com/ibm-q/technology/experience/.
[78] WEINSTEIN M. Strange bedfellows:Quantum mechanics and data mining[J]. Nuclear Physics B Proceedings Supplements, 2010, 199:74-84.
[79] WEINSTEIN M, HORN D. Dynamic quantum clustering:A method for visual exploration of structures in data[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2009, 80(6):066117.
[80] FISCHER C C, TIBBETTS K J, DANE M, et al. Predicting crystal structure by merging data mining with quantum mechanics[J]. Nature Materials, 2006, 5(8):641-646.
[81] BIAMONTE J, WITTEK P, PANCOTTI N, et al. Quantum machine learning[J]. Nature, 2017, 549:195-203.
[82] LLOYD S, MOHSENI M, REBENTROST P. Quantum principal component analysis[J]. Nature Physics, 2014, 10:631-633.
[83] 阮越,陈汉武,刘志昊,等.量子主成分分析算法[J].计算机学报, 2014, 37(3):666-676. RUAN Y, CHEN H W, LIU Z H, et al. Quantum principal component analysis algorithm[J]. Chinese Journal of Computers, 2014, 37(3):666-676(in Chinese).
[84] 黄一鸣,雷航,李晓瑜.量子机器学习算法综述[J].计算机学报, 2018, 41(1):145-163. HUANG Y M, LEI H, LI X Y. A survey on quantum machine learning[J]. Chinese Journal of Computers, 2018, 41(1):145-163(in Chinese).
[85] 张天姣,钱炜祺,周宇,等.人工智能与空气动力学结合的初步思考[J].航空工程进展, 2019, 10(1):1-11. ZHANG T J, QIAN W Q, ZHOU Y, et al. Preliminary thoughts on the combination of artificial intelligence and aerodynamic[J]. Advances in Aeronautical Science and Engineering, 2019, 10(1):1-11(in Chinese).
[86] KAMATH C. Sapphire:Experiences in scientific data mining[J]. Journal of Physics Conference Series, 2008, 125(1):012094.
[87] 许瑞飞,邓一菊,钱瑞战.气动优化设计及其对CFD的需求[J].航空科学技术, 2011(2):50-52. XU R F, DENG Y J, QIAN R Z. Aerodynamic optimization design and its requirement to CFD[J]. Aeronautical Science&Technology, 2011(2):50-52(in Chinese).
[88] 孙文瑜,杜其奎,陈金如.计算方法[M].北京:科学出版社, 2007:1-251. SUN W Y, DU Q K, CHEN J R. Computational methods[M]. Beijing:China Science Publishing, 2007:1-251(in Chinese).
[89] CAI X D, WEEDBROOK C, SU Z E, et al. Experimental quantum computing to solve systems of linear equations[J]. Physical Review Letters, 2013, 110:230501.
[90] PAN J, CAO Y, YAO X, et al. Experimental realization of quantum algorithm for solving linear systems of equations[J]. Physical Review A, 2014, 89:022313.
[91] CHILDS A M, KOTHARI R, SOMMA R D. Quantum algorithm for systems of linear equations with exponentially improved dependence on precision[J]. SIAM Journal on Computing, 2017, 46(6):1920-1950.
[92] WOSSNIG L, ZHAO Z, PRAKASH A. Quantum linear system algorithm for dense matrices[J]. Physical Review Letters, 2018, 120(5):050502.
[93] SATO S, KINJO M, NAKAJIMA K. An approach for quantum computing using adiabatic evolution algorithm[J]. Japanese Journal of Applied Physics, 2003, 42(11):7169-7173.
[94] SUBASI Y, SOMMA R D, ORSUCCI D. Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing[J]. Physical Review Letters, 2019, 122:060504.
[95] WEN J, KONG X, WEI S, et al. Experimental realization of quantum algorithms for a linear system inspired by adiabatic quantum computing[J]. Physical Review A, 2019, 99:012320.
[96] KANE D M, KUTIN S A. Quantum interpolation of polynomilas[J]. Quantum Information&Computation, 2011, 11(1-2):95-103.
[97] AJOY A, LIU Y X, SAHA K, et al. Quantum interpolation for high-resolution sensing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9):2149-2153.
[98] ZHOU R G, HU W, FAN P, et al. Quantum realization of the bilinear interpolation method for NEQR[J]. Scientific Reports, 2017, 7(1):2511.
[99] DIEP D N, GIANG D H. Quantum communication and quantum multivariate polynomial interpolation[J]. International Journal of Theoretical Physics, 2017, 56(9):2797-2802.
[100] CHEN J, CHILDS A M, HUNG S H. Quantum algorithm for multivariate polynomial interpolation[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2018, 474:20170480.
[101] ZHOU R, HU W, LUO G, et al. Quantum realization of the nearest neighbor value interpolation method for INEQR[J]. Quantum Information Processing, 2018, 17(7):166.
[102] GUDDER S. Examples of quantum integrals[J]. Reports on Mathematical Physics, 2010, 66(1):21-40.
[103] CHEN J, TANG Y. Quantum integral equations of volterra type in terms of discrete-time normal martingale[J]. Turkish Journal of Mathematics, 2019, 43:1047-1060.
[104] GUDDER S. Quantum measures and integrals[J]. Reports on Mathematical Physics, 2012, 69(1):87-101.
[105] KRISHNAN C, KUMAR K V P, RAJU A. An alternative path integral for quantum gravity[J]. Journal of High Energy Physics, 2016, 10:043.
[106] LLOYD S, GARNERONE S, ZANARDI P. Quantum algorithms for topological and geometric analysis of data[J]. Nature Communications, 2016, 7:10138.
[107] BERRY D W. Quantum algorithms for solving linear differential equations[J]. Journal of Physics A Mathematical&Theoretical, 2012, 47(10):298-307.
[108] 王丹,白俊强,黄江涛. FFD方法在气动优化设计中的应用[J].中国科学:物理学力学天文学, 2014, 44(3):267-277. WANG D, BAI J Q, HUANG J T. The application of FFD method in aerodynamic optimization design[J]. Scientia Sinica Physica, Mechanica&Astronomica, 2014, 44(3):267-277(in Chinese).
[109] HOGG T, PORTNOV D. Quantum optimization[J]. Information Sciences, 2000, 128:181-197.
[110] ANGUITA D, RIDELLA S, RIVIECCIO F, et al. Quantum optimization for training support vector machines[J]. Neural Networks, 2003, 16:763-770.
[111] YAMAKAMI T. Quantum optimization problems[J]. Lecture Notes in Computer Science, 2002, 2509:300-314.
[112] YANG S, WANG M, JIAO L. A quantum particle swarm optimization[C]//Proceedings of the Congress on Evolutionary Computation, 2004:320-324.
[113] BOIXO S, ORTIZ G, SOMMA R. Fast quantum methods for optimization[J]. The European Physical Journal Special Topics, 2015, 224:35-49.
[114] MALOSSINI A, BLANZIERI E, CALARCO T. Quantum genetic optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(2):231-341.
[115] 杜卫林,李斌,田宇.量子退火算法研究进展[J].计算机研究与发展, 2008, 45(9):1501-1508. DU W L, LI B, TIAN Y. Quantum annealing algorithms:state of the art[J]. Journal of Computer Research and Development, 2008, 45(9):1501-1508(in Chinese).
[116] BERWALD J J. The mathematics of quantum-enabled applications on the D-wave quantum computer[J]. Notices of the American Mathematical Society, 2019, 66(6):832-841.
[117] KING A D, HOSKINSON E, LANTING T, et al. Degeneracy, degree, and heavy tails in quantum annealing[J]. Physical Review A, 2015, 93(2):247-256.
[118] D-wave publications[EB/OL].(2019-10-12)[2019-10-12].https://www.dwavesys.com/resources/publications?type=internal.
[119] KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814:1-4.
[120] LIU Y, WANG Y, DENG L, et al. A novel in-situ compression method for CFD data based on generative adversarial network[J]. Journal of Visualization, 2019, 22(1):95-108.
[121] LIU Y, LU Y, WANG Y, et al. A CNN-based shock detection method in flow visualization[J]. Computers&Fluids, 2019, 184:1-9.
[122] YEPEZ J. Quantum computation of fluid dynamics[C]//Proceedings of the NASA International Conference on Quantum Computing and Quantum Communications. Berlin Heidelberg:Springer-Verlag, 1999:34-60.
[123] YEPEZ J. A quantum lattice-gas model for computational fluid dynamics[J]. Physical Review E, 2001, 63:046702.
[124] SCOVILLE J A. Type II quantum computing algorithm for computational fluid dynamics[R]. Washington,D.C.:Air Force Institute of Technology, 2006.
[125] FROLOV A V. Can a quantum computer be applied for numerical weather prediction?[J]. Russian Meteorology and Hydrology, 2017, 42(9):545-553.