Review

Quantum computing and its application prospect in aerodynamics

  • LU Fengshun ,
  • CHEN Bo ,
  • JIANG Xiong
Expand
  • Computational Aerodynamic Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2019-09-17

  Revised date: 2019-10-18

  Online published: 2019-10-17

Supported by

Pre-Research Generic Technology Project (41406030201);National Key Research and Development Program (2017-YFB0202100)

Abstract

Quantum computing is one of the most important post Moore’s Law computing technologies. It can harness the unparalleled computing capacity of the quantum computers, compared with classic computers. Quantum computing will bring a disruptive impact on various industries in the future. With respect to the opportunities and challenges brought by quantum computing to aerodynamics, we first present a detailed survey on the research progress of quantum computers, quantum algorithms, and quantum infrastructure software stack. Then, we select the most commonly used basic methods in the field of aerodynamics and present the recent advances in quantum equations in solving linear equations, interpolation operations, numerical integration, and search optimization. Next, the application prospects of quantum computing in the field of aerodynamics are systematically analyzed. Finally, we point out the research direction that needs to be focused on, including the quantum algorithm relevant to aerodynamics and the quantum software environment that should be built.

Cite this article

LU Fengshun , CHEN Bo , JIANG Xiong . Quantum computing and its application prospect in aerodynamics[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(4) : 23508 -023508 . DOI: 10.7527/S1000-6893.2019.23508

References

[1] FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6-7):467-488.
[2] DEUTSCH D. Quantum theory, the Church-Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society A:Mathematical and Physical Sciences, 1985, 400(1818):97-117.
[3] DEUTSCH D,JOZSA R. Rapid solution of problems by quantum computation[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1992, 439(1907):553-558.
[4] SHOR P W. Algorithms for quantum computation:Discrete logarithms and factoring[C]//Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994:124-134.
[5] GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the 28th Annual ACM Symposium on the Theory of Computing. New York:ACM, 1996:212-219.
[6] LONG G L. Grover algorithm with zero theoretical failure rate[J]. Physical Review A, 2001, 64(2):022307.
[7] CASTAGNOLI G. Highlighting the mechanism of the quantum speedup by time-symmetric and relational quantum mechanics[J]. Foundations of Physics, 2016, 46(3):360-381.
[8] HARROW A, HASSIDIM A, LLOYD S. Quantum algorithm for linear systems of equations[J]. Physical Review Letters, 2009, 103(15):150502.
[9] IBM Q system[EB/OL].(2019-08-02)[2019-08-13]. http://www.research.ibm.com/ibm-q/system-one/.
[10] 林落.世界首台光量子计算机诞生[J].科学新闻, 2018(1):23-24. LIN L. The first photon quantum computer[J]. Science News, 2018(1):23-24(in Chinese).
[11] 孙晓明.量子计算若干前沿问题综述[J].中国科学:信息科学, 2016, 46(8):982-1002. SUN X M. A survey on quantum computing[J]. Scientia Sinica Informationis, 2016, 46(8):982-1002(in Chinese).
[12] WU J, LIU Y, ZHANG B, et al. A benchmark test of boson sampling on Tianhe-2 supercomputer[J]. National Science Review, 2018, 5(5):715-720.
[13] 许文琪.国外量子信息技术发展分析[J].国防科技工业,2019(5):46-48. XU W Q. Analysis on the development of foreign quantum information technology[J]. Defence Science&Technology Industry, 2019(5):46-48(in Chinese).
[14] 张来平,邓小刚,何磊,等. E级计算给CFD带来的机遇与挑战[J].空气动力学学报, 2016, 34(4):405-417. ZHANG L P, DENG X G, HE L, et al. The opportunity and grand challenges in computational fluid dynamics by exascale computing[J]. Acta Aerodynamica Sinica, 2016, 34(4):405-417(in Chinese).
[15] STEIJL R, BARAKOS G N. Parallel evaluation of quantum algorithms for computational fluid dynamics[J]. Computers and Fluids, 2018, 173:22-28.
[16] BENENTI G, CASATI G, STRINI G. Principles of quantum computation and information I[M]. Singapore:World Scientific Publishing Co. Pte. Ltd, 2004:75-143.
[17] 李明,陈宗海.量子计算机——未来二十年的挑战[C]//2006年系统仿真及其应用学术交流会论文集.合肥:中国科学技术大学出版社, 2006:833-839. LI M, CHEN Z H. Quantum computers-The challenges in the next twenty years[C]//Proceedings of the 2006 System Simulation and Application. Hefei:China University of Science and Technology Press, 2006:833-839(in Chinese).
[18] 张焕国,毛少武,吴万青,等.量子计算复杂性理论综述[J].计算机学报, 2016, 39(12):2403-2428. ZHANG H G, MAO S W, WU W Q, et al. Overview of quantum computation complexity theory[J]. Chinese Journal of Computers, 2016, 39(12):2403-2428(in Chinese).
[19] DEUTSCH D. Quantum computational networks[J]. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences, 1989, 425(1868):73-90.
[20] YAO A C-C. Quantum circuit complexity[C]//Proceedings of the 34th Symposium on Foundations of Computer Science, 1993:352-361.
[21] COPPERSMITH D. An approximate fourier transform useful in quantum factoring:RC 19642[R]. New York:IBM Research Division, 1994.
[22] MASHHADI S. General secret sharing based on quantum Fourier transform[J]. Quantum Information Processing, 2019, 18:114.
[23] MOORE G E. Progress in digital integrated electronics[J]. IEEE Solid-State Circuits Newsletter, 2006, 20(3):36-37.
[24] DESAI S B, MADHVAPATHY S R, SACHID A B, et al. MoS2 transistors with 1-nanometer gate lengths[J]. Science, 2016, 354(6308):99-102.
[25] SHENDE V V, PRASAD A K, MARKOV I L, et al. Synthesis of reversible logic circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2006, 22(6):710-722.
[26] YANG G, SONG X, HUNG W N N, et al. Bi-directional synthesis of 4-Bit rversible circuits[J]. Computer Journal, 2008, 51(2):207-215.
[27] AARONSON S, GOTTESMAN D. Improved simulation of stabilizer circuits[J]. Physical Review A, 2004, 70(5):052328.
[28] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte Der Physik, 2010, 48(9-11):771-783.
[29] 韩永建,李传锋,郭光灿.量子计算原理及研究进展[J].科技导报, 2017, 35(23):70-75. HAN Y J, LI C F, GUO G C. The principle and development of quantum computation[J]. Science&Technology Review, 2017, 35(23):70-75(in Chinese).
[30] IonQ homepage[EB/OL].(2019-08-15)[2019-09-07]. https://ionq.com/.
[31] CIRAC J I, ZOLLER P. Quantum computations with cold trapped ions[J]. Physical Review Letters, 1995, 74(20):4091.
[32] YE Y, GE Z Y, WU Y, et al. Propagation and localization of collective excitations on a 24-qubit superconducting processor[J]. Physical Review Letters, 2019, 123(5):050502.
[33] WU Z, ZHANG L, SUN W, et al. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates[J]. Science, 2016, 354(6308):83-88.
[34] STEINBRECHER G R, OLSON J P, ENGLUND D, et al. Quantum optical neural networks[J]. NPJ Quantum Information, 2019, 5:60.
[35] 龙桂鲁,肖丽.核磁共振量子计算机与并行量子计算[J].物理与工程, 2003, 13(3):12-14,20. LONG G L, XIAO L. Nuclear magnetic resonance quantum computer and parallel quantum computing[J]. Physics and Engineering, 2003, 13(3):12-14,20(in Chinese).
[36] GERSHENFELD N A, CHUANG I L. Bulk spin-resonance quantum computation[J]. Science, 1997, 275(5298):350-356.
[37] Honeywell quantum solutions[EB/OL].(2019-08-19)[2019-09-10]. https://www.honeywell.com/en-us/company/quantum.
[38] MASLOV D, NAM Y, KIM J. An outlook for quantum computing[J]. Proceedings of the IEEE, 2019, 107(1):5-10.
[39] QPU developed by rigetti computing[EB/OL].(2019-07-14)[2019-09-10]. https://www.rigetti.com/qpu.
[40] ALVAREZ-RODRIGUEZ U, SANZ M, LAMATA L, et al. Quantum artificial life in an ibm quantum computer[J]. Scientific Reports, 2018, 8:14793.
[41] FU X Q, BAO W S, HUANG H L, et al. Realization of t-bit semiclassical quantum Fourier transform on IBM's quantum cloud computer[J]. Chinese Physics B, 2019, 28(2):020302.
[42] 崔竞一,刘翼鹏,郭建胜.基于IBM量子计算云服务的量子傅里叶变换实现[J].信息技术与网络安全, 2019, 38(4):19-24. CUI J Y, LIU Y P, GUO J S. Implementation of quantum Fourier transform using IBM quantum computer on cloud[J]. Cryptography Technology and Application, 2019, 38(4):19-24(in Chinese).
[43] BEHERA B K, SETH S, DAS A, et al. Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer[J]. Quantum Information Processing, 2019, 18(4):125.
[44] MANDVIWALLA A, OHSHIRO K, JI B. Implementing grover's algorithm on the ibm quantum computers[C]//Proceedings of IEEE International Conference on Big Data, 2018:2531-2537.
[45] WANG H H, HE Y, LI Y H, et al. High-efficiency multiphoton boson sampling[J]. Nature Photonics, 2017, 11:361-365.
[46] CAI X D, WEEDBROOK C, SU Z E, et al. Experimental quantum computing to solve systems of linear equations[J]. Physical Review Letters, 2013, 110(23):230501.
[47] CAI X D, WU D, SU Z E, et al. Entanglement-based machine learning on a quantum computer[J]. Physical Review Letters, 2015, 114(11):110504.
[48] ZHENG Y, SONG C, CHEN M C, et al. Solving systems of linear equations with a superconducting quantum processor[J]. Physical Review Letters, 2017, 118(21):210504.
[49] National Academies of Sciences, Engineering, and Medicine. Quantum computing:Progress and prospects[M]. Washington, D.C.:The National Academies Press, 2019:1-252.
[50] TABUCHI Y, TAMATE S, NAKAMURA Y. Toward scalable superconducting quantum computer implementation[J]. IEICE Transactions on Electronics, 2019, E102-C (3):212-216.
[51] DYAKONOV M I. When will we have a quantum computer[J]. Solid State Electronics, 2019, 155:4-6.
[52] STEIGER D S, HNER T, TROYER M. Advantages of a modular high-level quantum programming framework[J]. Microprocessors and Microsystems, 2019, 66:81-89.
[53] ZENG W, JOHNSON B, SMITH R, et al. First quantum computers need smart software[J]. Nature, 2017, 549(7671):149-151.
[54] SHOR P W. Why haven't more quantum algorithms been found?[J]. Journal of the ACM, 2003, 50(1):87-90.
[55] SHAO C P, LI Y, LI H B. Quantum algorithm design:Techniques and applications[J]. Journal of Systems Science&Complexity, 2019, 32:375-452.
[56] KITAEV A. Quantum measurements and the abelian stabilizer problem[J]. Hep Websearch Hep, 1995, 3:1-22.
[57] LLOYD S, REBENTROST P, MOHSENI M. Quantum principal component analysis[J]. Nature Physics, 2014, 10:631-633.
[58] LONG G L. General quantum interference principle and duality computer[J]. Communications in Theoretical Physics, 2006, 45:825-844.
[59] CHILDS A M, WIEBE N. Hamiltonian simulation using linear combinations of unitary operations[J]. Quantum Information and Computation, 2012, 12:901-924.
[60] GILY N A, ARUNACHALAM S, WIEBE N. Optimizing quantum optimization algorithms via faster quantum gradient computation[C]//Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2019:1425-1444.
[61] KERENIDIS I, PRAKASH A. Quantum recommendation system[C]//Proceedings of 8th Innovations in Theoretical Computer Science Conference, 2017:49.
[62] WU N, HU H, SONG F, et al. Quantum software framework:A tentative study[J]. Frontiers of Computer Science, 2013, 7(3):341-349.
[63] TULSI A. General framework for quantum search algorithms[J]. Physical Review A, 2012, 86:042331.
[64] GAO X, NIELSEN E, MULLER R P, et al. The QCAD framework for quantum device modeling[C]//Proceedings of 15th International Workshop on Computational Electronics, 2012.
[65] JAVADIABHARI A, PATIL S, KUDROW D, et al. ScaffCC:Scalable compilation and analysis of quantum programs[J]. Parallel Computing, 2015, 45:2-17.
[66] AVILA A B D, REISER R H S, PILLA M L, et al. State-of-the-art quantum computing simulators:Features, optimizations, and improvements for D-GM[J]. Neurocomputing, 2019, https://doi.org/10.1016/j.neucom.2019.01.118[in press].
[67] 刘树森,周立,官极,等. Q|SI〉:一个量子程序设计环境[J].中国科学:信息科学, 2017, 47(10):1300-1315. LIU S S, ZHOU L, GUAN J, et al. Q|SI〉:A quantum programming environment[J]. Scientia Sinica Informationis, 2017, 47(10):1300-1315(in Chinese).
[68] STEIGER D S, HNER T, TROYER M. ProjectQ:An open source software framework for quantum computing[J]. Quantum, 2018, 2:49.
[69] Quantum computing environments HiQ[EB/OL].(2019-09-06)[2019-09-08]. https://www.huaweicloud.com/solution/hiq/index.html.
[70] Qurator VSCode extension[EB/OL].(2019-07-15)[2019-08-30]. https://marketplace.visualstudio.com/items?itemName=Qurator.qurator-vscode.
[71] Cirq[EB/OL].(2019-06-13)[2019-09-04]. https://github.com/quantumlib/cirq.
[72] OpenFermion[EB/OL].(2019-08-14)[2019-09-05]. https://github.com/quantumlib/OpenFermion.
[73] Quantum development kit[EB/OL].(2019-06-25)[2019-09-05]. https://www.microsoft.com/en-us/quantum/development-kit.
[74] Qiskit[EB/OL].(2019-08-20)[2019-09-05]. https://qiskit.org/.
[75] Quantum computing cloud[EB/OL].(2019-08-30)[2019-09-05]. http://quantumcomputer.ac.cn/.
[76] Origion quantum computing cloud service platform[EB/OL].(2019-09-01)[2019-09-05]. http://www.qubitonline.cn/.
[77] IBM Q experience[EB/OL].(2019-08-12)[2019-09-05]. https://www.research.ibm.com/ibm-q/technology/experience/.
[78] WEINSTEIN M. Strange bedfellows:Quantum mechanics and data mining[J]. Nuclear Physics B Proceedings Supplements, 2010, 199:74-84.
[79] WEINSTEIN M, HORN D. Dynamic quantum clustering:A method for visual exploration of structures in data[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2009, 80(6):066117.
[80] FISCHER C C, TIBBETTS K J, DANE M, et al. Predicting crystal structure by merging data mining with quantum mechanics[J]. Nature Materials, 2006, 5(8):641-646.
[81] BIAMONTE J, WITTEK P, PANCOTTI N, et al. Quantum machine learning[J]. Nature, 2017, 549:195-203.
[82] LLOYD S, MOHSENI M, REBENTROST P. Quantum principal component analysis[J]. Nature Physics, 2014, 10:631-633.
[83] 阮越,陈汉武,刘志昊,等.量子主成分分析算法[J].计算机学报, 2014, 37(3):666-676. RUAN Y, CHEN H W, LIU Z H, et al. Quantum principal component analysis algorithm[J]. Chinese Journal of Computers, 2014, 37(3):666-676(in Chinese).
[84] 黄一鸣,雷航,李晓瑜.量子机器学习算法综述[J].计算机学报, 2018, 41(1):145-163. HUANG Y M, LEI H, LI X Y. A survey on quantum machine learning[J]. Chinese Journal of Computers, 2018, 41(1):145-163(in Chinese).
[85] 张天姣,钱炜祺,周宇,等.人工智能与空气动力学结合的初步思考[J].航空工程进展, 2019, 10(1):1-11. ZHANG T J, QIAN W Q, ZHOU Y, et al. Preliminary thoughts on the combination of artificial intelligence and aerodynamic[J]. Advances in Aeronautical Science and Engineering, 2019, 10(1):1-11(in Chinese).
[86] KAMATH C. Sapphire:Experiences in scientific data mining[J]. Journal of Physics Conference Series, 2008, 125(1):012094.
[87] 许瑞飞,邓一菊,钱瑞战.气动优化设计及其对CFD的需求[J].航空科学技术, 2011(2):50-52. XU R F, DENG Y J, QIAN R Z. Aerodynamic optimization design and its requirement to CFD[J]. Aeronautical Science&Technology, 2011(2):50-52(in Chinese).
[88] 孙文瑜,杜其奎,陈金如.计算方法[M].北京:科学出版社, 2007:1-251. SUN W Y, DU Q K, CHEN J R. Computational methods[M]. Beijing:China Science Publishing, 2007:1-251(in Chinese).
[89] CAI X D, WEEDBROOK C, SU Z E, et al. Experimental quantum computing to solve systems of linear equations[J]. Physical Review Letters, 2013, 110:230501.
[90] PAN J, CAO Y, YAO X, et al. Experimental realization of quantum algorithm for solving linear systems of equations[J]. Physical Review A, 2014, 89:022313.
[91] CHILDS A M, KOTHARI R, SOMMA R D. Quantum algorithm for systems of linear equations with exponentially improved dependence on precision[J]. SIAM Journal on Computing, 2017, 46(6):1920-1950.
[92] WOSSNIG L, ZHAO Z, PRAKASH A. Quantum linear system algorithm for dense matrices[J]. Physical Review Letters, 2018, 120(5):050502.
[93] SATO S, KINJO M, NAKAJIMA K. An approach for quantum computing using adiabatic evolution algorithm[J]. Japanese Journal of Applied Physics, 2003, 42(11):7169-7173.
[94] SUBASI Y, SOMMA R D, ORSUCCI D. Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing[J]. Physical Review Letters, 2019, 122:060504.
[95] WEN J, KONG X, WEI S, et al. Experimental realization of quantum algorithms for a linear system inspired by adiabatic quantum computing[J]. Physical Review A, 2019, 99:012320.
[96] KANE D M, KUTIN S A. Quantum interpolation of polynomilas[J]. Quantum Information&Computation, 2011, 11(1-2):95-103.
[97] AJOY A, LIU Y X, SAHA K, et al. Quantum interpolation for high-resolution sensing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9):2149-2153.
[98] ZHOU R G, HU W, FAN P, et al. Quantum realization of the bilinear interpolation method for NEQR[J]. Scientific Reports, 2017, 7(1):2511.
[99] DIEP D N, GIANG D H. Quantum communication and quantum multivariate polynomial interpolation[J]. International Journal of Theoretical Physics, 2017, 56(9):2797-2802.
[100] CHEN J, CHILDS A M, HUNG S H. Quantum algorithm for multivariate polynomial interpolation[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2018, 474:20170480.
[101] ZHOU R, HU W, LUO G, et al. Quantum realization of the nearest neighbor value interpolation method for INEQR[J]. Quantum Information Processing, 2018, 17(7):166.
[102] GUDDER S. Examples of quantum integrals[J]. Reports on Mathematical Physics, 2010, 66(1):21-40.
[103] CHEN J, TANG Y. Quantum integral equations of volterra type in terms of discrete-time normal martingale[J]. Turkish Journal of Mathematics, 2019, 43:1047-1060.
[104] GUDDER S. Quantum measures and integrals[J]. Reports on Mathematical Physics, 2012, 69(1):87-101.
[105] KRISHNAN C, KUMAR K V P, RAJU A. An alternative path integral for quantum gravity[J]. Journal of High Energy Physics, 2016, 10:043.
[106] LLOYD S, GARNERONE S, ZANARDI P. Quantum algorithms for topological and geometric analysis of data[J]. Nature Communications, 2016, 7:10138.
[107] BERRY D W. Quantum algorithms for solving linear differential equations[J]. Journal of Physics A Mathematical&Theoretical, 2012, 47(10):298-307.
[108] 王丹,白俊强,黄江涛. FFD方法在气动优化设计中的应用[J].中国科学:物理学力学天文学, 2014, 44(3):267-277. WANG D, BAI J Q, HUANG J T. The application of FFD method in aerodynamic optimization design[J]. Scientia Sinica Physica, Mechanica&Astronomica, 2014, 44(3):267-277(in Chinese).
[109] HOGG T, PORTNOV D. Quantum optimization[J]. Information Sciences, 2000, 128:181-197.
[110] ANGUITA D, RIDELLA S, RIVIECCIO F, et al. Quantum optimization for training support vector machines[J]. Neural Networks, 2003, 16:763-770.
[111] YAMAKAMI T. Quantum optimization problems[J]. Lecture Notes in Computer Science, 2002, 2509:300-314.
[112] YANG S, WANG M, JIAO L. A quantum particle swarm optimization[C]//Proceedings of the Congress on Evolutionary Computation, 2004:320-324.
[113] BOIXO S, ORTIZ G, SOMMA R. Fast quantum methods for optimization[J]. The European Physical Journal Special Topics, 2015, 224:35-49.
[114] MALOSSINI A, BLANZIERI E, CALARCO T. Quantum genetic optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(2):231-341.
[115] 杜卫林,李斌,田宇.量子退火算法研究进展[J].计算机研究与发展, 2008, 45(9):1501-1508. DU W L, LI B, TIAN Y. Quantum annealing algorithms:state of the art[J]. Journal of Computer Research and Development, 2008, 45(9):1501-1508(in Chinese).
[116] BERWALD J J. The mathematics of quantum-enabled applications on the D-wave quantum computer[J]. Notices of the American Mathematical Society, 2019, 66(6):832-841.
[117] KING A D, HOSKINSON E, LANTING T, et al. Degeneracy, degree, and heavy tails in quantum annealing[J]. Physical Review A, 2015, 93(2):247-256.
[118] D-wave publications[EB/OL].(2019-10-12)[2019-10-12].https://www.dwavesys.com/resources/publications?type=internal.
[119] KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814:1-4.
[120] LIU Y, WANG Y, DENG L, et al. A novel in-situ compression method for CFD data based on generative adversarial network[J]. Journal of Visualization, 2019, 22(1):95-108.
[121] LIU Y, LU Y, WANG Y, et al. A CNN-based shock detection method in flow visualization[J]. Computers&Fluids, 2019, 184:1-9.
[122] YEPEZ J. Quantum computation of fluid dynamics[C]//Proceedings of the NASA International Conference on Quantum Computing and Quantum Communications. Berlin Heidelberg:Springer-Verlag, 1999:34-60.
[123] YEPEZ J. A quantum lattice-gas model for computational fluid dynamics[J]. Physical Review E, 2001, 63:046702.
[124] SCOVILLE J A. Type II quantum computing algorithm for computational fluid dynamics[R]. Washington,D.C.:Air Force Institute of Technology, 2006.
[125] FROLOV A V. Can a quantum computer be applied for numerical weather prediction?[J]. Russian Meteorology and Hydrology, 2017, 42(9):545-553.
Outlines

/