Electronics and Electrical Engineering and Control

Adaptive Siamese network based UAV target tracking algorithm

  • LIU Fang ,
  • YANG Anzhe ,
  • WU Zhiwei
Expand
  • Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

Received date: 2019-09-02

  Revised date: 2019-09-17

  Online published: 2019-10-17

Supported by

National Natural Science Foundation of China (61171119)

Abstract

UAVs have been widely used in military and civilian applications. Target tracking is one of the key technologies for UAV applications. Aiming at the problem that the target is prone to deformation and occlusion during the tracking process of the UAV, a target tracking algorithm for UAV based on adaptive Siamese network is proposed. Firstly, using two convolution networks, a 5-layer Siamese network is constructed. The target location is obtained by convolving the template features with the current frame image features. Secondly, the Gaussian mixture model is used to model the previous prediction results and establish the target template library. Thirdly, the most reliable target template is selected from the template library to update the matching template of the Siamese network, so that the Siamese network can adapt to the target. Finally, a regression model is introduced to further pinpoint the target location and reduce the impact of background on network performance. The results show that the algorithm effectively reduces the influence of deformation and occlusion on tracking performance and are highly accurate.

Cite this article

LIU Fang , YANG Anzhe , WU Zhiwei . Adaptive Siamese network based UAV target tracking algorithm[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(1) : 323423 -323423 . DOI: 10.7527/S1000-6893.2019.23423

References

[1] 管皓, 薛向阳, 安志勇. 深度学习在视频目标跟踪中的应用进展与展望[J]. 自动化学报, 2016, 42(6):834-847. GUAN H, XUE X Y, AN Z Y. Advances on application of deep learning for video object tracking[J]. Acta Automatica Sinica, 2016, 42(6):834-847(in Chinese).
[2] 李靖, 马晓东, 陈怀民, 等. 无人机视觉导航着陆地标实时检测跟踪方法[J]. 西北工业大学学报, 2018, 36(2):294-301. LI J, MA X D, CHEN H M, et al. Real-time detection and tracking method of landmark based on UAV visual navigation[J]. Journal of Northwestern Polytechnical University, 2018, 36(2):294-301(in Chinese).
[3] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
[4] LI Y, ZHU J. A scale adaptive kernel correlation filter tracker with feature integration[C]//European Conference on Computer Vision. Berlin:Springer, 2014:254-265.
[5] HONG Z, CHEN N Z, WANG C, et al. MUlti-Store Tracker (MUSTer):A cognitive psychology inspired approach to object tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press,2015:749-758.
[6] 赵洲, 黄攀峰, 陈路. 一种融合卡尔曼滤波的改进时空上下文跟踪算法[J]. 航空学报, 2017, 38(2):320306. ZHAO Z, HUANG P F, CHEN L. A tracking algorithm of improved spatio-temporal context with Kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):320306(in Chinese).
[7] DANELLJAN M, HAGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. Piscataway, NJ:IEEE Press, 2015:58-66.
[8] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//European Conference on Computer Vision. Berlin:Springer, 2016:850-865.
[9] VALMADRE J, BERTINETTO L, HENRIQUES J F, et al. End-to-end representation learning for correlation filter based tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2017:2805-2813.
[10] WANG Q, GAO J, XING J, et al. DCFNet:Discriminant correlation filters network for visual tracking[EB/OL]. (2017-04-13)[2019-08-20]. https://arxiv.org/pdf/1704.04057.pdf.
[11] DANELLJAN M, BHAT G, KHAN F S, et al. ECO:Efficient convolution operators for tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NI:IEEE Press, 2017:6638-6646.
[12] LIU F, GONG C, HUANG X, et al. Robust visual tracking revisited:From correlation filter to template matching[J]. IEEE Transactions on Image Processing, 2018, 27(6):2777-2790.
[13] IOFFE S, SZEGEDY C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[EB/OL]. (2015-03-02)[2019-08-20]. https://arxiv.org/pdf/1502.03167.pdf.
[14] 张园强, 查宇飞, 库涛, 等. 基于多实例回归模型的视觉跟踪算法研究[J]. 电子与信息学报, 2018, 40(5):1202-1209. ZHANG Y Q, ZHA Y F, KU T, et al. Visual object tracking based on multi-exemplar regression model[J]. Journal of Electronics & Information Technology, 2018, 40(5):1202-1209(in Chinese).
[15] DECLERCQ A, PIATER J H. Online learning of gaussian mixture models-a two-level approach[C]//VISAPP 2008:Proceedings of the Third International Conference on Computer Vision Theory and Applications, 2008:605-611.
[16] GIRSHICK R, DONAHUE J, DARRELLAND T, et al. Rich feature hierarchies for object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2014:580-587.
[17] MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking[J]. Far East Journal of Mathematical Sciences, 2016, 2(2):445-461.
[18] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252.
[19] LI F, TIAN C, ZUO W, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2018:4904-4913.
[20] HUANG C, LUCEY S, RAMANAN D. Learning policies for adaptive tracking with deep feature cascades[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE Press, 2017:105-114.
[21] DANELLJAN M, HAGER G, SHAHBAZ K F, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE Press, 2015:4310-4318.
[22] ZHANG J, MA S, SCLAROFF S. MEEM:Robust tracking via multiple experts using entropy minimization[C]//European Conference on Computer Vision. Berlin:Springer, 2014:188-203.
[23] HARE S, GOLODETZ S, SAFFARI A, et al. Struck:Structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(10):2096-2109.
[24] DANELLJAN M, HAGER G, KHAN F, et al. Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference. Guildford:BMVA Press, 2014:1-5.
[25] KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(7):1409-1422.
[26] JIA X, LU H, YANG M H. Visual tracking via adaptive structural local sparse appearance model[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2012:1822-1829.
[27] HENRIQUES J F, CASEIRO R, MARINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//European Conference on Computer Vision. Berlin:Springer, 2012:702-715.
[28] LI B, YAN J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2018:8971-8980.
[29] GUO Q, WEI F, ZHOU C, et al. Learning dynamic siamese network for visual object tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE Press, 2017:1763-1771.
Outlines

/