[1] 彭兢,黄昊,向开恒,等.月球无人采样返回任务概念设想[J].航天器工程, 2010, 19(5):99-104. PENG J, HUANG H, XIANG K H, et al. Conception design of a lunar robotic sampling and return mission[J]. Spacecraft Engineering, 2010, 19(5):99-104(in Chinese).
[2] LI F, MAO Y, YAN J G,et al. A simulation of the four-way lunar lander-orbiter tracking mode for the Chang'E-5 mission[J]. Advances in Space Research, 2016, 2016(57):2376-2384.
[3] KELLY T J. A review of the Apollo lunar module program and its lessons for future space missions[C]//AIAA Space Programs and Technologies Conference.Reston,VA:AIAA, 1990:1-7.
[4] ROBINSON M S, PLESCIA J B, JOLLIFF B L, et al. Soviet lunar sample return missions:Landing site identification and geologic context[J]. Planetary and Space Science, 2012, 69(2012):76-88.
[5] DJACHKOVA M V, LITVAK M L, MITROFANOV I G, et al. Selection of Luna-25 landing sites in the south polar region of the moon[J]. Solar System Research, 2017, 51(3):185-195.
[6] 郑燕红,邓湘金,赵志晖,等.地外天体采样任务特点及关键技术发展建议[J].探矿工程(岩土钻掘工程), 2014, 41(9):71-74. ZHENG Y H, DENG X J, ZHAO Z H, et al. The character and key technology suggestion of extraterrestrial sampling mission[J].Exploration Engineering (Rock&Soil Drilling and Tunneling), 2014, 41(9):71-74(in Chinese).
[7] NASA. National space exploration campaign report.[R].Washington, D.C.:NASA,2018.
[8] HEIKEN G H, VANIMAN D T, FRENCH B M. Lunar sourcebook a user's guide to the moon[M]. New York:Cambrige University Press,1991.
[9] 唐钧跃.基于可钻性在线辨识的月面钻取采样钻进规程研究[D].哈尔滨:哈尔滨工业大学,2014. TANG J Y. Research on drilling strategy of lunar drilling and coring based on real-time recognition of drillability[D].Harbin:Harbin Institute of Technology,2014(in Chinese).
[10] STATHAM S, HANAGUD S, RUZZENE M, et al. Design and validation of an LDV-Based structural health monitoring in drilling automation for mars exploration[C]//48th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confe4rence. Reston,VA:AIAA,2007:1-13.
[11] 王丽丽,刘志全,吴伟仁,等.月球钻取采样机构的钻杆结构与运动参数分析[J].航空学报,2016, 37(2):738-748. WANG L L, LIU Z Q, WU W R, et al. Analysis of drill stem structural and kinematic parameters of lunar drilling sampling mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):738-748(in Chinese).
[12] 邓宗全,田野,唐德威,等.用于地外星体探测的一种新结构取心钻头研究[J].机械工程学报,2013, 49(19):104-110. DENG Z Q, TIAN Y, TANG D W, et al. Research on new structure coring bit for extraterrestrial bodies exploration[J]. Journal of Mechanical Engineering, 2013, 49(19):104-110(in Chinese).
[13] 赖小明.月壤剖面模拟及其钻进负载特性研究[D].长沙:国防科技大学,2016:68-69. LAI X M. The cross-section simulant of lunar regolith and research on drilling load feature[D].Changsha:National University of Defense Technology, 2016:68-69(in Chinese).
[14] 庞勇,冯亚杰,孙启臣,等.月壤大颗粒对钻进力载影响的仿真及实验研究[J].北京大学学报(自然科学版),2019, 55(3):397-403. PANG Y, FENG Y J, SUN Q C, et al. Simulation and experimental study on the effect of large granular rocks in lunar soil on drilling load[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(3):397-403(in Chinese).
[15] LAMBE T W, WHITMAN R V. Soil mechanics[M]. New York:John Wiley&Sons, 1969.
[16] 郑燕红,邓湘金,姚猛,等.一类月面钻进采样机构的鲁棒控制[J].空间控制技术与应用,2014,40(5):36-41. ZHENG Y H, DENG X J, YAO M, et al. Robust control for a class of lunar drill sampling mechanism[J]. Aero-space Control and Application,2014, 40(5):36-41(in Chinese).
[17] 贾阳,申振荣,党兆龙,等.模拟月壤研究及其在月球探测工程中的应用[J].航天器环境工程,2014,31(3):241-247. JIA Y, SHENG Z R, DANG Z L, et al. Lunar soil simulant and its engineering application in lunar exploration program[J].Spacecraft Environment Engineering,2014, 31(3):241-247(in Chinese).
[18] 邹猛,李建桥,何玲,等.不同粒径分布模拟月壤承压特性试验研究[J].航空学报,2012,33(12):2338-2345. ZOU M, LI J Q, HE L, et al. Experiment study on the pressure-sinkage characteristic of the simulant lunar regolith with different particle size distribution[J]. Acta Aeronautica et Astronautica Sinica, 2012,33(12):2338-2345(in Chinese).
[19] GRAVES A. Supervised sequence labeling with recurrent neural networks[M]. Berlin Heidelberg:Springer-Verlag, 2012.
[20] 王鑫,吴际,刘超,等.基于LSTM循环神经网络的故障时间序列预测[J].北京航空航天大学学报,2018, 44(4):772-784. WANG X, WU J, LIU C, et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4):772-784(in Chinese).
[21] LIPTON Z C, BERKOWITZ J. A critical review of recurrent neural networks for sequence learning[J]. Computer Science, 2015:23-30.
[22] DEY R, SALEM F M. Gate-variants of gated recurrent unit (GRU) neural networks[C]//Circuits and Systems, 2017 IEEE 60th International Midwest Symposium. Piscataway,NJ:IEEE Press,2017.
[23] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Massachusetts:MIT Press, 2016:203-218.
[24] 石叶楠,郑国磊.三种用于加工特征识别的神经网络方法综述[J].航空学报,2019, 40(9):022840. SHI Y N, ZHENG G L. A review of three neural network methods for manufacturing feature recognition[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):022840(in Chinese).