Captive Trajectory System (CTS) is an advanced test system for predicting the release trajectory of the external storages, which commonly uses the six-degree-of-freedom (6-DOF) series mechanism as the motion mechanism. As the large inertia force and the accumulated joint error, the positioning precision of the series mechanism is not enough. Compared with the series mechanism, the parallel mechanism has the advantages of small inertia force and non-accumulation of joint errors. In this paper, 6-PTRT parallel mechanism is employed as the 6-DOF motion mechanism for the CTS. The ground calibration method of the CTS parallel mechanism is studied in the space-constrained wind tunnel environment:the method of measuring and calculating the position and posture of the moving platform is presented, the calibration model which included the clamped angel repairman of the linear drive platform is established, the structural parameters are identified base on the method of nonlinear least squares. After identification, the position accuracy of the CTS parallel mechanism is better than 0.1 mm and the posture accuracy is better than 0.05°. Finally the CTS parallel mechanism and the regular attack angle mechanism are compared in the wind tunnel test. The wind tunnel test results show that the position and posture accuracy of the CTS mechanism under wind-load meets the requirements of the force wind tunnel test.
XIE Feng
,
HONG Guanxin
,
ZHANG Chenkai
,
WEI Zhongwu
,
MA Handong
. Ground calibration method of captive trajectory system parallel mechanism[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020
, 41(1)
: 423175
-423175
.
DOI: 10.7527/S1000-6893.2019.23175
[1] 李周复. 风洞试验手册[M]. 北京:航空工业出版社,2015:554-581. LI Z F. Wind tunnel handbook[M]. Beijing:Aviation Industry Press, 2015:554-581(in Chinese).
[2] 黄叙辉, 罗新福, 于志松. FL-24风洞新型捕获轨迹系统设计与发展[J]. 空气动力学报, 2008, 26(2):146-149. HUANG X H, LUO X F, YU Z S. Design & development of a new captive trajectory simulation system in FL-24 wind tunnel[J]. Acta Aerodynamic Sinica, 2008, 26(2):146-149(in Chinese).
[3] MOSHE Z, MOTY S. The use of the captive trajectory system for computation of trajectories to the impact point:AIAA-92-4031[R]. Reston, VA:AIAA, 1992.
[4] MICHAEL J H. 战术导弹空气动力学[M]. 北京:宇航出版社, 1999:578-662. MICHAEL J H. Tactical missile aerodynamics:General topics[M]. Beijing:Astronavigation Press, 1999:578-662(in Chinese).
[5] 黄叙辉, 庞旭东, 宋斌. 1.2 m跨超声速风洞新型捕获轨迹系统研制[J]. 实验流体力学, 2008, 22(2):95-98. HUANG X H, PANG X D, SONG B. Development of a new captive trajectory simulation system in the 1.2 m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(2):95-98(in Chinese).
[6] LOMBARDI G. Use of a captive trajectory system in a wind tunnel:AGARD CP 570[R]. 1996.
[7] 张曙, HEISEL U. 并联运动机床[M]. 北京:机械工业出版社, 2003:18-34. ZHANG S, HEISEL U. Parallel kinematics machine tool[M]. Beijing:Machinery Industry Press, 2003:18-34(in Chinese).
[8] 樊锐, 王进, 侯立果. 基于拆分测量的6-UPS并联机构精度的标定[J]. 黑龙江科技大学学报, 2018, 28(4):426-429. FAN R, WANG J, HOU L G. Calibration of 6-UPS parallel mechanism based on split measurement[J]. Journal of Heilongjiang University of Science & Technology, 2018, 28(4):426-429(in Chinese).
[9] 曾磊. 平面3-RRR并联机构标定方法与控制系统研究[D]. 广州:华南理工大学, 2017:16-25. ZENG L. Research on the calibration method and control system of planar 3-RRR parallel mechanism[D]. Guangzhou:South China University of Technology, 2017:16-25(in Chinese).
[10] 戴智武, 刘超, 盛鑫军, 等. Delta并联机器人机构参数误差分析及标定方法研究[J]. 机电一体化, 2016(3):8-12. DAI Z W, LIU C, SHENG X J, et al. The error analysis and calibration of delta parallel robot[J]. Mechatronics, 2016(3):8-12(in Chinese).
[11] 李寅翔. 2-UPR-RPU并联机构运动学标定研究[D]. 杭州:浙江理工大学, 2015:23-50. LI Y X. Kinematic calibration of a 2-UPR-RPU parallel manipulator[D]. Hangzhou:Zhejiang Sci-Tech University, 2015:23-50(in Chinese).
[12] 马志强, 李泷杲, 刑宏文, 等. 3-PPPS并联机翼调姿机构运动学标定[J]. 计算机集成制造系统, 2015, 21(9):2378-2383. MA Z Q, LI L G, XING H W, et al. Kinematic calibration of 3-PPPS parallel wing posture adjustment mechanism[J]. Computer Integrated Manufacturing Systems, 2015, 21(9):2378-2383(in Chinese).
[13] 张立杰, 李立泉, 王艮川. 基于三坐标测量机的球面5R并联机构运动学标定研究[J]. 中国机械工程, 2013, 24(22):2997-3002. ZHANG L J, LI L Q, WANG G C. Research on kinematic calibration of spherical 5R parallel manipulator based on coordinate measuring machine[J]. China Mechanical Engineering, 2013, 24(22):2997-3002(in Chinese).
[14] 皮阳军, 王宣银, 胡玉梅. 基于关节力传感器的并联六自由度机构标定方法[J]. 农业机械学报, 2012, 43(10):215-218. PI Y J, WANG X Y, HU Y M. Calibration of 6-DOF parallel mechanism using joint force sensors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10):215-218(in Chinese).
[15] 张建中. 基于倾角测量位姿的六自由度平台运动学标定研究[D]. 哈尔滨:哈尔滨工业大学,2007:33-44. ZHANG J Z. Kinematics calibration of stewart platforms based on configurations measured with two inclinometers[D]. Harbin:Harbin Institute of Technology, 2007:33-44(in Chinese).
[16] 孙皓. 5-UPS/PRPU并联机器人精度设计与运动学参数辨识[D]. 天津:天津理工大学,2009:23-33. SUN H. Research on the accuracy design and kinematics parameters calibration of 5-UPS/PRPU parallel manipulator[D]. Tianjin:Tianjin University of Technology, 2009:23-33(in Chinese).
[17] 刘文涛, 唐德威, 王知行. Stewart平台机构标定的鸡尾酒法[J]. 机械工程学报,2004,40(12):48-52. LIU W T, TANG D W, WANG Z X. Cocktail method for stewart platform calibration[J]. Journal of Mechanical Engineering. 2004, 40(12):48-52(in Chinese).
[18] MANSOUR A, HODJAT P, ARIA A, et al. Experimental kinematic calibration of parallel manipulators using a relative position error measurement system[J]. Robotics and Computer Integrated Manufacturing, 2010, 26(6):799-804.
[19] DAVID D. Kinematic calibration of the gough platform[J]. Robotica, 2003, 21(6):677-690.
[20] 李鹭扬. 6-SPS型并联机床若干关键理论研究[D]. 南京:南京航空航天大学, 2011:18-20. LI L Y. Research on some key theoretical issues of 6-SPS parallel kinematic machines[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:18-20(in Chinese).
[21] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 北京:高等教育出版社, 2008:90-113. SHENG Z, XIE S Q, PAN C Y. Probability theory and mathematical statistics[M]. Beijing:Higher Education Press, 2008:90-113(in Chinese).