[1] ZHELTOVODOV A A. Some advances in research of shock wave turbulent boundary layer interactions:AIAA-2006-0496[R]. Reston, VA:AIAA, 2006.
[2] SELIG M S, ANDREOPOULOS J, MUCK K C, et al. Turbulence structure in a shock wave/turbulent boundary layer interaction[J]. AIAA Journal, 1989, 27(7):862-869.
[3] SETTLES G S, BOGDONOFF S M, VAS I E. Incipient separation of a supersonic turbulent boundary layer at high Reynolds number[J]. AIAA Journal, 1976, 14(1):50-56.
[4] ZHELTOVODOV A A, SCHULEIN E, HORSTMAN C. Development of separation in the region where a shock interacts with a turbulent boundary layer perturbed by rarefaction waves[J]. Journal of Applied Mechanics and Technical Physics, 1993, 34(3):346-354.
[5] CLEMENS N T, NARAYANASWAMY V. Low frequency unsteadiness of shock wave turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46:469-492.
[6] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72:80-99.
[7] SMITS A J, MUCK K C. Experimental study of three shock wave/turbulent boundary layer interactions[J]. Journal of Fluid Mechanics, 1987, 182:291-314.
[8] ARDONCEAU P L. The structure of turbulence in a supersonic shock wave/boundary layer interaction[J]. AIAA Journal, 1984, 22(9):1254-1262.
[9] HUMBLE R A, SCARANO F. Unsteady aspects of an incident shock wave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 635:47-74.
[10] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889.
[11] WU M, MARTIN M P. Analysis of shock motion in shock wave and turbulent boundary layer interaction using direct numerical simulation data[J]. Journal of Fluid Mechanics, 2008, 594:71-83.
[12] PRIEBE S, WU M, MARTIN M P. Low-frequency unsteadiness in shock wave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699:1-49.
[13] PRIEBE S, WU M, MARTIN M P. Direct numerical simulation of a reflected shock wave turbulent boundary layer interaction[J]. AIAA Journal, 2009, 47(5):1173-1185.
[14] BOOKEY P B, WYCKHAM C, SMITS A J. Experimental investigations of Mach 3 shock wave turbulent boundary layer interaction:AIAA-2005-4899[R]. Reston, VA:AIAA, 2005.
[15] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(9):1651-1658.
[16] TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:Turning angle effects[J]. Computers and Fluids, 2017, 149:56-69.
[17] TONG F L, TANG Z G, YU C P, et al. Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls[J]. Journal of Turbulence, 2017, 18(6):569-588.
[18] TONG F L, LI X L, DUAN Y H, et al. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp[J]. Physics of Fluids, 2017, 29:125101.
[19] CHEW Y T. Shock wave and boundary layer interaction in the presence of an expansion corner[J]. Aeronautical Quarterly, 1979, 30:506-527.
[20] CHUNG K M, LU F K. Hypersonic turbulent expansion-corner flow with shock impingement[J]. Journal of Propulsion and Power, 1995, 11(3):441-447.
[21] WHITE M E, AULT D A. Expansion corner effects on hypersonic shock wave/turbulent boundary-layer interactions[J]. Journal of Propulsion and Power, 1996, 12(6):1169-1173.
[22] SATHIANARAYANAN A, VERMA S B. Experimental investigation of an incident shock-induced interaction near an expansion corner[J]. AIAA Journal, 2017, 54(3):769-773.
[23] KONOPKA M, MEINKE M, SCHRODER W. Large-eddy simulation of relaminarization in supersonic flow:AIAA-2012-2978[R]. Reston, VA:AIAA, 2012.
[24] 童福林, 周桂宇, 周浩, 等. 激波/湍流边界层干扰物面剪切应力统计特性[J]. 航空学报, 2019, 40(5):122504. TONG F L, ZHOU G Y, ZHOU H, et al. Statistical characteristics of wall shear stress in shock wave and turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122504 (in Chinese).
[25] MARTIN M P, TAYLOR E M, WU M. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220:270-289.
[26] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18:065113.
[27] SIMPSON R L. Turbulent boundary-layer seperation[J]. Annual Review of Fluid Mechanics, 1989, 21:205-234.
[28] FANG J, YAO Y F, ZHELTOVODOV A A, et al. Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner[J]. Physics of Fluids, 2015, 27:125104.
[29] 史爱明, DOWELL E H. 斜激波总压损失率极小值理论解及物理意义[J]. 航空学报, 2018, 39(12):122517. SHI A M, DOWELL E H. Theoretical solutions and physical significances for minimum ratio of total pressure loss by oblique shock[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122517 (in Chinese).
[30] LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. Large eddy simulation of shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2006, 565:135-169.
[31] PASQUARIELLO V, HICKEL S, ADAMS N A. Unsteady effects of strong shock wave/boundary layer interaction at high Reynolds number[J]. Journal of Fluid Mechanics, 2017, 823:617-657.
[32] BERNARDINI M, PIROZZOLI S. Wall pressure fluctuations beneath supersonic turbulent boundary layers[J]. Physics of Fluids, 2011, 23:085102.
[33] MUCK K C, ANDREOPOULOS J, DUSSAUGE J P. Unsteady nature of shock wave/turbulent boundary layer interaction[J]. AIAA Journal, 1988, 26(2):179-187.
[34] WILLMARTH W W, WOOLDRIDGE C E. Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer[J]. Journal of Fluid Mechanics, 1962, 14:187-210.
[35] SCHEWE G. On the structure and resolution of wall pressure fluctuations associated with turbulent boundary layer flow[J]. Journal of Fluid Mechanics, 1983, 134:311-328.
[36] TAN D K M, TRAN T T, BOGDONOFF S M. Wall pressure fluctuations in a three-dimensional shock wave/turbulent boundary layer interaction[J]. AIAA Journal, 1987, 25(1):14-21.
[37] MAESTRELLO L. Radiation from and panel response to a supersonic turbulent boundary layer:DOC. D1-82-0719[R]. Seattle:Boeing Scientific Research Laboratories, 1968.
[38] ARNETTE S A, SAMIMY M, ELLIOTT G S. The effects of expansion on the turbulence structure of compressible boundary layers[J]. Journal of Fluid Mechanics, 1998, 367:67-105.
[39] KLEBANOFF P S. Characteristics of turbulence in a boundary layer with zero pressure gradient:NACA Report 1247[R]. Washington, D.C.:NASA, 1955.
[40] GRILLI M, HICKEL S, ADAMS N A. Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp[J]. International Journal of Heat and Fluid Flow, 2013, 42:79-93.
[41] PIROZZOLI S, BERNARDINI M. Direct numerical simulation database for impinging shock wave/turbulent boundary layer interaction[J]. AIAA Journal, 2011, 49(6):1307-1312.
[42] SCHLATTER P, ORLU R. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2010, 659:116-126.
[43] TAIRA K, BRUNTON S L, DAWSON S T, et al. Modal analysis of fluid flows:An overview[J]. AIAA Journal, 2017, 55(12):1-29.
[44] MUSTAFA M A, PARZIALE N J, SMITH M S, et al. Amplification and structure of streamwise velocity fluctuations in compression corner shock wave/turbulent boundary layer interactions[J]. Journal of Fluid Mechanics, 2019, 863:1091-1122.
[45] 童福林, 李新亮, 段焰辉. 超声速压缩拐角激波/边界层干扰动力学模态分解[J]. 航空学报, 2017, 38(12):121376. TONG F L, LI X L, DUAN Y H. Dynamic mode decomposition of shock wave and supersonic boundary layer interactions in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121376 (in Chinese).
[46] GRILLI M, SCHMID P J, HICKEL S, et al. Analysis of unsteady behavior in shock wave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 700:16-28.