Fluid Mechanics and Flight Mechanics

Direct numerical simulation of impinging shock wave/turbulent boundary layer interactions in a supersonic expansion corner

  • TONG Fulin ,
  • SUN Dong ,
  • YUAN Xianxu ,
  • LI Xinliang
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    3. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    4. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2019-08-02

  Revised date: 2019-10-12

  Online published: 2019-10-10

Supported by

National Natural Science Foundation of China(11972356, 91852203); National Key Research and Development Program of China(2016YFA0401200)

Abstract

To reveal the expansion effects on the complicated flow phenomena, direct numerical simulations of impinging shock wave and turbulent boundary layer interaction for the incident shock of 30° at Mach number 2.9 in an expansion corner of 10° are performed. Three cases, corresponding to the impingement point upstream, in the vicinity and downstream of the expansion corner, are systematically studied to investigate the intricate flow mechanisms, including separation bubble, fluctuating wall pressure and unsteady motion of shock wave, statistical characteristics of turbulent boundary layer, and dynamical processes of coherent structure. The results indicate that the variations of impingement point have significant influence on the streamwise and wall-normal scales of separation bubble, especially when the shock wave is located at the corner or in its downstream region. It is found that the intensities of fluctuating wall pressure are dramatically reduced in the expansion region, and the downstream-propagating speed of wall pressure waves is significantly reduced in the separation region and relatively accelerated in the expansion region. The low-frequency unsteady oscillations of separated shock waves are dramatically suppressed by the expansion effects. Compared with the inter-actions between oblique shock-wave and turbulent boundary layer of flat-plate, the logarithmic and wake regions of the mean velocity profile in the reattachment boundary layer are evidently changed by the variations of impingement point. The structure parameter for the Reynolds stress is increased in the inner region and decreased in the outer layer. The anisotropy invariant maps suggest that the turbulence in the near wall region gradually deviates from the one-component state. Furthermore, the proper orthogonal decomposition analysis of the fluctuating streamwise velocity indicates that the dominant mode is associated with the separated shock and the foot of separated shear layer, whereas the high-order mode is characterized by the small-scale sign-alternating fluctuation structures. The obtained low-order reconstruction illustrates that the dominant mode is corresponding to the dilation and contraction of separation bubble, but the high-order mode is associated with the high frequency ossification of separation bubble.

Cite this article

TONG Fulin , SUN Dong , YUAN Xianxu , LI Xinliang . Direct numerical simulation of impinging shock wave/turbulent boundary layer interactions in a supersonic expansion corner[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(3) : 123328 -123328 . DOI: 10.7527/S1000-6893.2019.23328

References

[1] ZHELTOVODOV A A. Some advances in research of shock wave turbulent boundary layer interactions:AIAA-2006-0496[R]. Reston, VA:AIAA, 2006.
[2] SELIG M S, ANDREOPOULOS J, MUCK K C, et al. Turbulence structure in a shock wave/turbulent boundary layer interaction[J]. AIAA Journal, 1989, 27(7):862-869.
[3] SETTLES G S, BOGDONOFF S M, VAS I E. Incipient separation of a supersonic turbulent boundary layer at high Reynolds number[J]. AIAA Journal, 1976, 14(1):50-56.
[4] ZHELTOVODOV A A, SCHULEIN E, HORSTMAN C. Development of separation in the region where a shock interacts with a turbulent boundary layer perturbed by rarefaction waves[J]. Journal of Applied Mechanics and Technical Physics, 1993, 34(3):346-354.
[5] CLEMENS N T, NARAYANASWAMY V. Low frequency unsteadiness of shock wave turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46:469-492.
[6] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72:80-99.
[7] SMITS A J, MUCK K C. Experimental study of three shock wave/turbulent boundary layer interactions[J]. Journal of Fluid Mechanics, 1987, 182:291-314.
[8] ARDONCEAU P L. The structure of turbulence in a supersonic shock wave/boundary layer interaction[J]. AIAA Journal, 1984, 22(9):1254-1262.
[9] HUMBLE R A, SCARANO F. Unsteady aspects of an incident shock wave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 635:47-74.
[10] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889.
[11] WU M, MARTIN M P. Analysis of shock motion in shock wave and turbulent boundary layer interaction using direct numerical simulation data[J]. Journal of Fluid Mechanics, 2008, 594:71-83.
[12] PRIEBE S, WU M, MARTIN M P. Low-frequency unsteadiness in shock wave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699:1-49.
[13] PRIEBE S, WU M, MARTIN M P. Direct numerical simulation of a reflected shock wave turbulent boundary layer interaction[J]. AIAA Journal, 2009, 47(5):1173-1185.
[14] BOOKEY P B, WYCKHAM C, SMITS A J. Experimental investigations of Mach 3 shock wave turbulent boundary layer interaction:AIAA-2005-4899[R]. Reston, VA:AIAA, 2005.
[15] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(9):1651-1658.
[16] TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:Turning angle effects[J]. Computers and Fluids, 2017, 149:56-69.
[17] TONG F L, TANG Z G, YU C P, et al. Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls[J]. Journal of Turbulence, 2017, 18(6):569-588.
[18] TONG F L, LI X L, DUAN Y H, et al. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp[J]. Physics of Fluids, 2017, 29:125101.
[19] CHEW Y T. Shock wave and boundary layer interaction in the presence of an expansion corner[J]. Aeronautical Quarterly, 1979, 30:506-527.
[20] CHUNG K M, LU F K. Hypersonic turbulent expansion-corner flow with shock impingement[J]. Journal of Propulsion and Power, 1995, 11(3):441-447.
[21] WHITE M E, AULT D A. Expansion corner effects on hypersonic shock wave/turbulent boundary-layer interactions[J]. Journal of Propulsion and Power, 1996, 12(6):1169-1173.
[22] SATHIANARAYANAN A, VERMA S B. Experimental investigation of an incident shock-induced interaction near an expansion corner[J]. AIAA Journal, 2017, 54(3):769-773.
[23] KONOPKA M, MEINKE M, SCHRODER W. Large-eddy simulation of relaminarization in supersonic flow:AIAA-2012-2978[R]. Reston, VA:AIAA, 2012.
[24] 童福林, 周桂宇, 周浩, 等. 激波/湍流边界层干扰物面剪切应力统计特性[J]. 航空学报, 2019, 40(5):122504. TONG F L, ZHOU G Y, ZHOU H, et al. Statistical characteristics of wall shear stress in shock wave and turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122504 (in Chinese).
[25] MARTIN M P, TAYLOR E M, WU M. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220:270-289.
[26] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18:065113.
[27] SIMPSON R L. Turbulent boundary-layer seperation[J]. Annual Review of Fluid Mechanics, 1989, 21:205-234.
[28] FANG J, YAO Y F, ZHELTOVODOV A A, et al. Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner[J]. Physics of Fluids, 2015, 27:125104.
[29] 史爱明, DOWELL E H. 斜激波总压损失率极小值理论解及物理意义[J]. 航空学报, 2018, 39(12):122517. SHI A M, DOWELL E H. Theoretical solutions and physical significances for minimum ratio of total pressure loss by oblique shock[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122517 (in Chinese).
[30] LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. Large eddy simulation of shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2006, 565:135-169.
[31] PASQUARIELLO V, HICKEL S, ADAMS N A. Unsteady effects of strong shock wave/boundary layer interaction at high Reynolds number[J]. Journal of Fluid Mechanics, 2017, 823:617-657.
[32] BERNARDINI M, PIROZZOLI S. Wall pressure fluctuations beneath supersonic turbulent boundary layers[J]. Physics of Fluids, 2011, 23:085102.
[33] MUCK K C, ANDREOPOULOS J, DUSSAUGE J P. Unsteady nature of shock wave/turbulent boundary layer interaction[J]. AIAA Journal, 1988, 26(2):179-187.
[34] WILLMARTH W W, WOOLDRIDGE C E. Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer[J]. Journal of Fluid Mechanics, 1962, 14:187-210.
[35] SCHEWE G. On the structure and resolution of wall pressure fluctuations associated with turbulent boundary layer flow[J]. Journal of Fluid Mechanics, 1983, 134:311-328.
[36] TAN D K M, TRAN T T, BOGDONOFF S M. Wall pressure fluctuations in a three-dimensional shock wave/turbulent boundary layer interaction[J]. AIAA Journal, 1987, 25(1):14-21.
[37] MAESTRELLO L. Radiation from and panel response to a supersonic turbulent boundary layer:DOC. D1-82-0719[R]. Seattle:Boeing Scientific Research Laboratories, 1968.
[38] ARNETTE S A, SAMIMY M, ELLIOTT G S. The effects of expansion on the turbulence structure of compressible boundary layers[J]. Journal of Fluid Mechanics, 1998, 367:67-105.
[39] KLEBANOFF P S. Characteristics of turbulence in a boundary layer with zero pressure gradient:NACA Report 1247[R]. Washington, D.C.:NASA, 1955.
[40] GRILLI M, HICKEL S, ADAMS N A. Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp[J]. International Journal of Heat and Fluid Flow, 2013, 42:79-93.
[41] PIROZZOLI S, BERNARDINI M. Direct numerical simulation database for impinging shock wave/turbulent boundary layer interaction[J]. AIAA Journal, 2011, 49(6):1307-1312.
[42] SCHLATTER P, ORLU R. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2010, 659:116-126.
[43] TAIRA K, BRUNTON S L, DAWSON S T, et al. Modal analysis of fluid flows:An overview[J]. AIAA Journal, 2017, 55(12):1-29.
[44] MUSTAFA M A, PARZIALE N J, SMITH M S, et al. Amplification and structure of streamwise velocity fluctuations in compression corner shock wave/turbulent boundary layer interactions[J]. Journal of Fluid Mechanics, 2019, 863:1091-1122.
[45] 童福林, 李新亮, 段焰辉. 超声速压缩拐角激波/边界层干扰动力学模态分解[J]. 航空学报, 2017, 38(12):121376. TONG F L, LI X L, DUAN Y H. Dynamic mode decomposition of shock wave and supersonic boundary layer interactions in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121376 (in Chinese).
[46] GRILLI M, SCHMID P J, HICKEL S, et al. Analysis of unsteady behavior in shock wave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 700:16-28.
Outlines

/