Special Column of High Performance Surface Processing Technology for Componets and Parts with Complex Surface

Research progress of abrasive water jet blanking technology for aero-engine integral blade

  • GAO Hang ,
  • YUAN Yemin ,
  • CHEN Jianfeng ,
  • WANG Xuanping
Expand
  • College of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

Received date: 2019-07-25

  Revised date: 2019-08-02

  Online published: 2019-10-10

Supported by

National Natural Science Foundation of China-NSFC-Liaoning Joint Fund(U1708256)

Abstract

Integral blade is an important development direction of aeroengine technology. However, the current integral blade is made of difficult-to-machine materials. How to achieve high quality and high efficiency machining of integral blade is one of the most urgent problems in the field of mechanical manufacturing. Roughening of integral blade blanking by Abrasive Water Jet (AWJ) technology is an effective means to improve the processing efficiency of integral blade and reduce the cost of expensive milling tools. In this paper, the domestic and foreign studies of the material removal mechanism of AWJ machining, the trajectory optimization of complex surface, the combination optimization of multi-physical and mechanical parameters, and the intergral blade blanking equipment are summarized. On this basis, the solutions to some key problems of the intergral blade blanking with complex surface structure are put forward. The development trend of AWJ in high efficiency machining of complex curved surface parts is pointed out. The application and feasibility of AWJ in high efficiency machining of complex curved surface parts are prospected.

Cite this article

GAO Hang , YUAN Yemin , CHEN Jianfeng , WANG Xuanping . Research progress of abrasive water jet blanking technology for aero-engine integral blade[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(2) : 623319 -623319 . DOI: 10.7527/S1000-6893.2019.23319

References

[1] 罗皎, 李淼泉. 高性能整体叶盘制造技术研究进展[J]. 精密成形工程, 2015, 7(6):1-7. LUO J, LI M Q. A review on the manufacting technology of high property blisk[J]. Journal of Netshape Forming Engineering, 2015, 7(6):1-7(in Chinese).
[2] 史耀耀, 段继豪, 张军锋, 等. 整体叶盘制造工艺技术综述[J]. 航空制造技术, 2012, 399(3):26-31. SHI Y Y, DUAN J H, ZHANG J F, et al. Blisk disc manufacturing process technology[J]. Aeronautical Manufacturing Process Technology, 2012, 399(3):26-31(in Chinese).
[3] 张海艳, 张连锋. 航空发动机整体叶盘制造技术国内外发展概述[J]. 航空制造技术, 2013, 443(z2):38-41. ZHANG H Y, ZHANG L F. Development overview of aero-engine integral blisk and its manufacturing technology at home and abroad[J]. Aeronautical Manufacturing Process Technology, 2013, 443(z2):38-41(in Chinese).
[4] ZHAO P, JIN H, SHI Y. Structure design and rotation control of the disc milling head in blisk manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2016, 88(5-8):1-13.
[5] 曹京霞, 弭光宝, 蔡建明, 等. 高温钛合金制造技术研究进展[J]. 钛工业进展, 2018, 35(1):1-8. CAO J X, MI E B, CAI J M, et al. Progress on manufacturing technology of high temperature titanium alloy[J]. Titanium Industry Progress, 2018, 35(1):1-8(in Chinese).
[6] FU Y, WANG X, HANG G, et al. Blade surface uniformity of blisk finished by abrasive flow machining[J]. International Journal of Advanced Manufacturing Technology, 2016, 84(5-8):1725-1735.
[7] RAAB U, LEVIN S, WAGNER L, et al. Orbital friction welding as an alternative process for blisk manufacturing[J]. Journal of Materials Processing Tech, 2015, 215(1):189-192.
[8] 黄云, 肖贵坚, 邹莱. 整体叶盘抛光技术的研究现状及发展趋势[J]. 航空学报, 2016, 37(7):2045-2064. HUANG Y, XIAO G J, ZOU L.Current situation and development trend of polishing technology for blisk[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2045-2064(in Chinese).
[9] 闫雪, 韩秀峰. 商用航空发动机整体叶盘通道加工方法分析[J]. 航空制造技术, 2015, 481(12):66-69. YAN X, HAN X F. Slot roughing process analysis of commercial aeroengine blisk[J]. Aeronautical Manufacturing Process Technology, 2015, 481(12):66-69(in Chinese).
[10] KLOCKE F, ZEIS M, KLINK A, et al. Technological and economical comparison of roughing strategies via milling, sinking-EDM, wire-EDM and ECM for titanium-and nickel-based blisks[J]. CIRP Journal of Manufacturing Science and Technology, 2013, 6(3):198-203.
[11] 任军学, 姜振南, 姚倡锋, 等. 开式整体叶盘四坐标高效开槽插铣工艺方法[J]. 航空学报, 2008, 30(6):1692-1698. REN J X, JIANG Z N, YAO C F, et al. Process for four-axis high efficiency slot plunge milling of open blisk[J]. Acta Aeronautica et Astronautica Sinica, 2008, 30(6):1692-1698(in Chinese).
[12] 张为民, 宋学坤, 郝小忠, 等. 基于特征的开式整体叶盘插铣粗加工刀轴矢量优化生成方法[J]. 航空制造技术, 2014, 451(7):76-79. ZHANG W M, SONG X K, HAO X Z, et al. Feature based optimal tool axis generation method for plunge milling in rough machining of open blisk[J]. Aeronautical Manufacturing Process Technology, 2014, 451(7):76-79(in Chinese).
[13] 田荣鑫, 邓霜, 张晓峰, 等. 基于控制线的开式整体叶盘环形刀四轴加工算法研究[J]. 航空制造技术, 2016, 513(18):88-94. TIAN R X, DENG S, ZHANG X F, et al. Algorithm research on the four-axis circular cutter machining of open blisk based on the control curve[J]. Aeronautical Manufacturing Process Technology, 2016, 513(18):88-94(in Chinese).
[14] AHMED D H, NASER J, DEAM R T. Particles impact characteristics on cutting surface during the abrasive water jet machining:Numerical study[J]. Journal of Materials Processing Technology, 2016, 232:116-130.
[15] MONTESANO J, BOUGHERARA H, FAWAZ Z. Influence of drilling and abrasive water jet induced damage on the performance of carbon fabric/epoxy plates with holes[J]. Composite Structures, 2017, 163:257-266.
[16] HASHISH M. Waterjets for aeroengine applications[C]//The 24th International Conference on Water Jetting, 2018:207-217.
[17] DONG C, DAVIES I J. Flexural properties of E-Glass and TR50S carbon fiber reinforced epoxy hybrid composites[J]. Journal of Materials Engineering and Performance, 2013, 22(1):41-49.
[18] SCHWARTZENTRUBER J, PAPINI M, SPELT J K. Characterizing and modelling delamination of carbon-fiber epoxy laminates during abrasive waterjet cutting[J]. Composites Part A:Applied Science and Manufacturing, 2018, 112:299-314.
[19] SCHWARTZENTRUBER J, SPELT J K, PAPINI M. Prediction of surface roughness in abrasive waterjet trimming of fiber reinforced polymer composites[J]. International Journal of Machine Tools and Manufacture, 2017, 122:1-17.
[20] HEJJAJI A, ZITOUNE R, CROUZEIX L, et al. Surface and machining induced damage characterization of abrasive water jet milled carbon/epoxy composite specimens and their impact on tensile behavior[J]. Wear, 2017, 376:1356-1364.
[21] HASHISH M, 飞机复合材料磨料水射流加工[J]. 航空制造技术, 2009(15):54-56. HASHISH M. Machining airframe composite with abrasive waterjet[J]. Aeronautical Manufacturing Process Technology, 2009(15):54-56(in Chinese).
[22] SRIVASTAVA A K, NAG A, DIXIT A R, et al. Surface integrity in tangential turning of hybrid MMC A359/B4 C/Al2O3 by abrasive waterjet[J]. Journal of Manufacturing Processes, 2017, 28:11-20.
[23] KLOCKE F, NOVOVIC D, ELFIZY A, et al. Abrasive machining of advanced aerospace alloys and composites[J]. CIRP Annals-Manufacturing Technology, 2015, 64(2):581-604.
[24] PICKERING E G, O'MASTA M R, WADLEY H N G, et al. Effect of confinement on the static and dynamic indentation response of model ceramic and cermet materials[J]. International Journal of Impact Engineering, 2017, 110:123-137.
[25] 王辉, 周明星, 吴宝海, 等. 航空发动机先进材料高性能零部件制造技术进展[J]. 航空制造技术, 2015(22):47-51. WANG H, ZHOU M X, WU B H, et al. Recent advances on manufacturing technologies of aeroengine[J]. Aeronautical Manufacturing Process Technology, 2015(22):47-51(in Chinese).
[26] 张金勇, 李金山, 陈正, 等. 具有高强高塑性和良好加工硬化行为的新型亚稳β钛合金设计及发展[J]. 稀有金属材料与工程, 2018, 47(9):185-190. ZHANG J Y, LI J S, CHEN Z, et al. Design and development of new β titanium alloys with high strength, large ductility and improved strain-hardening behavior[J]. Rare Metal Materials and Engineering, 2018, 47(9):185-190(in Chinese).
[27] 逯冉. 一种兼具高强度、高应变硬化率和高塑性的新型钛合金[J]. 世界有色金属, 2015, 3:31-34. LÙ R. A new titanium alloy with a combination of high strength,high strain hardening and improved ductility[J]. World Nonferrous Metal, 2015, 3:31-34(in Chinese).
[28] KONG M, AXINTE D, VOICE W. Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide[J]. Journal of Materials Processing Technology, 2010, 210(3):573-584.
[29] AYED Y, GERMAIN G, AMMAR A, et al. Tool wear analysis and improvement of cutting conditions using the high-pressure water-jet assistance when machining the Ti17 titanium alloy[J]. Precision Engineering, 2015, 42:294-301.
[30] AYED Y, GERMAIN G, AMMAR A, et al. Degradation modes and tool wear mechanisms in finish and rough machining of Ti17 Titanium alloy under high-pressure water jet assistance[J]. Wear, 2013, 305(2):228-237.
[31] HLAVČ L M, GEMBALOV L, ŠTĚP N P, et al. Improvement of abrasive water jet machining accuracy for titanium and TiNb alloy[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(12):1733-1740.
[32] PATEL D, TANDON P. Experimental investigations of thermally enhanced abrasive water jet machining of hard-to-machine metals[J]. CIRP Journal of Manufacturing Science and Technology, 2015, 10:92-101.
[33] KONG M, AXINTE D, VOICE W. An innovative method to perform maskless plain waterjet milling for pocket generation:a case study in Ti-based superalloys[J]. International Journal of Machine Tools and Manufacture, 2011, 51:642-648.
[34] 付青峰, 杨细莲, 刘克明. 航空发动机高温材料的研究现状及展望[J]. 热处理技术与装备, 2018, 39(3):69-73. FU Q F, YANG X L, LIU K M. Current status of research and prospect of high temperature materials for aeroengine[J]. Rechuli Jishu Yu Zhuangbei, 2018, 39(3):69-73(in Chinese).
[35] 王妙全, 田成刚, 南洋, 等. 新型高温合金718Plus的性能特点、航空应用和发展趋势[J]. 材料导报, 2017, 31(19):72-79. WANG M Q, TIAN C G, NAN Y, et al. A Review on 718Plus, the new superalloy:performance, aerospace application and development trend[J]. Materials Review, 2017, 31(19):72-79(in Chinese).
[36] KONG M, AXINTE D, VOICE W. Challenges in using waterjet machining of NiTi shape memory alloys:An analysis of controlled-depth milling[J]. Journal of Materials Processing Technology, 2011, 211(6):959-971.
[37] 吴明阳, 田兆晖, 于永新, 等. PCBN刀具切削高温合金切削力试验分析[J]. 航空制造技术, 2017, 60(22):101-105. WU M Y, TIAN Z H, YU Y X, et al. Experimental study on cutting force in turning superalloy by PCBN cutting tool[J]. Aeronautical Manufacturing Process Technology, 2017, 60(22):101-105(in Chinese).
[38] KLOCKE F, SCHMITT R, ZEIS M, et al. Technological and economical assessment of alternative process chains for blisk manufacture[J]. Procedia CIRP, 2015, 35:67-72.
[39] 杨维学. 高压水射流技术在整体叶盘高效加工中的应用[J]. 航空发动机, 2019, 45(3):99-102. YANG W X. Application of high pressure water jet technology in high efficiency processing of blisk[J]. Aeroengine, 2019, 45(3):99-102(in Chinese).
[40] HASSAN A I, KOSMOL J. Dynamic elastic-plastic analysis of 3D deformation in abrasive waterjet machining[J]. Journal of Materials Processing Technology, 2001, 113(1):337-341.
[41] TAKAFFOL I, PAPIN I. Numerical simulation of solid particle impacts on Al6061-T6 Part II:Materials removal mechanisms for impact of multiple angular particles[J]. Wear, 2012, 296:648-655.
[42] ARABNEJAD H, MANSOURI A, SHIRAZI S A, et al. Development of mechanistic erosion equation for solid particles[J]. Wear, 2015, 332:44-50.
[43] FINNIE I, MCFADDEN D H. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence[J]. Wear, 1977, 48(1):181-190.
[44] BITTER J G A. A study of erosion phenomena part I[J]. Wear, 1963, 6(1):5-21.
[45] TILLY G P. A two stage mechanism of ductile erosion[J]. Wear, 1973, 23(1):87-96.
[46] MAGNE E. Generalized law of erosion:application to various alloys and intermetallics[J]. Wear, 1995, 183(3):500-510.
[47] HASCALIK A, ÇAYDAŞ U, GRN H. Effect of traverse speed on abrasive waterjet machining of Ti-6Al-4V alloy[J]. Materials and Design, 2007, 28(6):1953-1957.
[48] CHEN F L, SIORES E. The effect of cutting jet variation on surface striation formation in abrasive water jet cutting[J]. Journal of Materials Processing Technology, 2003, 41(10):1479-1486.
[49] SHIPWAY P H, FOWLER G, PASHBY I R. Characteristics of the surface of a titanium alloy following milling with abrasive waterjets[J]. Wear, 2005, 258(1):123-132.
[50] SHANMUGAM D K, NGUYEN T, WANG J. A study of delamination on graphite/epoxy composites in abrasive waterjet machining[J]. Composites Part A:Applied Science and Manufacturing, 2008, 39(6):923-929.
[51] MIESZALA M, TORRUBIA P L, AXINTE D A, et al. Erosion mechanisms during abrasive waterjet machining:Model microstructures and single particle experiments[J]. Journal of Materials Processing Technology, 2017, 247:92-102.
[52] LIU H T. Applications of abrasive-waterjets for machining fatigue-critical aerospace aluminum Parts[C]//Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2009:1-18.
[53] SHELDON G, FINNIE I. The mechanism of material removal in the erosive cutting of brittle materials[J]. Journal of Engineering for Industry, 1966, 88(4):393-399.
[54] EVANS A G, GULDEN M E, ROSENBLATT M. Impact damage in brittle materials in the elastic-plastic response regime[J]. Proceedings of the Royal Society of London, 1978, 361:343-365.
[55] MOMBER A. Stress-strain relation for water-driven particle erosion of quasi-brittle materials[J]. Theoretical and Applied Fracture Mechanics, 2001, 35(1):19-37.
[56] TANGWARODOMNUKUN V, WANG J, HUANG C Z, et al. An investigation of hybrid laser-waterjet ablation of silicon substrates[J]. International Journal of Machine Tools and Manufacture, 2012, 56(1):39-49.
[57] TANGWARODOMNUKUN V, WANG J, HUANG C Z, et al. Heating and material removal process in hybrid laser-waterjet ablation of silicon substrates[J]. International Journal of Machine Tools and Manufacture, 2014, 79(4):1-16.
[58] ZHE L, HUANG C, ZHU H, et al. A research on ultrasonic-assisted abrasive waterjet polishing of hard-brittle materials[J]. International Journal of Advanced Manufacturing Technology, 2015, 78:1361-1369.
[59] ZHE L, HUANG C, ZHU H, et al. FEM analysis on the abrasive erosion process in ultrasonic-assisted abrasive waterjet machining[J]. International Journal of Advanced Manufacturing Technology, 2015, 78:1641-1649.
[60] SHU W, ZHANG S, WU Y, et al. A key parameter to characterize the kerf profile error generated by abrasive water-jet[J]. International Journal of Advanced Manufacturing Technology, 2017, 90:1265-1275.
[61] LIU H, WANG J, KELSON N, et al. A study of abrasive waterjet characteristics by CFD simulation[J]. Journal of Materials Processing Technology, 2004, 153-154(1):488-493.
[62] 蔡志刚, 陈晓川, 王迪, 等. 碳碳复合材料的水射流钻孔技术研究[J]. 机械工程学报, 2019, 55(3):226-232. CAI Z G, CHEN X C, WANG D, et al. Research on water jet drilling technology for carbon-carbon composites[J]. Journal of Mechanical Engineering, 2019, 55(3):226-232(in Chinese).
[63] 张成光, 张勇, 张飞虎, 等. 磨料水射流加工去除模型研究[J]. 机械工程学报, 2015, 51(7):188-196. ZHANG C G, ZHANG Y, ZHANG F H, et al.Study on removal model of abrasive waterjet machining[J]. Journal of Mechanical Engineering, 2015, 51(7):188-196(in Chinese).
[64] ZHAO W, GUO C W. Topography and microstructure of the cutting surface machined with abrasive waterjet[J]. International Journal of Advanced Manufacturing Technology, 2014, 73:941-947.
[65] KONG M C, ANWAR S, BILLINGHAM J, et al. Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets:Part I-Single straight paths[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1):58-68.
[66] TORRUBIA P L, AXINTE D A, BILLINGHAM J. Stochastic modelling of abrasive waterjet footprints using finite element analysis[J]. International Journal of Machine Tools and Manufacture, 2015, 95:39-51.
[67] GUILLERNA A B, AXINTE D, BILLINGHAM J. The linear inverse problem in energy beam processing with an application to abrasive waterjet machining[J]. International Journal of Machine Tools and Manufacture, 2015, 99(1):34-42.
[68] PETE R, MILES P, HENNING A. Roles of taper compensation in AWJ ultra-precision machining[C]//The 23rd International Conference on Water Jetting Seattle, 2016:33-46.
[69] SHANMUGAM D K, WANG J, LIU H. Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique[J]. International Journal of Machine Tools and Manufacture, 2008, 48(14):1527-1534.
[70] LV Z, HOU R, HUANG C, et al. Investigation on erosion mechanism in ultrasonic assisted abrasive waterjet machining[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94:3741-3755.
[71] QI H, WEN D, LU C, et al. Numerical and experimental study on ultrasonic vibration-assisted micro-channelling of glasses using an abrasive slurry jet[J]. International Journal of Mechanical Sciences, 2016, 110:94-107.
[72] GUILLERNA A B, AXINTE D, BILLINGHAM J. The linear inverse problem in energy beam processing with an application to abrasive waterjet machining[J]. International Journal of Machine Tools and Manufacture, 2015, 99:34-42.
[73] 周大鹏. 磨料射流精密切割质量控制与补偿的研究[D]. 徐州:中国矿业大学, 2013:50-57. ZHOU D P. Study on accurate quality control of AWJ machining and its compensation technology[D]. Xuzhou:China University of Mining and Technology, 2013:50-57(in Chinese).
[74] 王舒. 厚材料3D水射流精密切割切缝特性研究[D]. 重庆:重庆大学, 2017:13-17. WANG S. Study on kerf characterization of thick materials machined with 3D waterjet precision cutting[D]. Chongqing:Chongqing University, 2017:13-17(in Chinese).
[75] 徐庆, 朱荻, 徐正扬, 等. 整体叶盘通道电解加工电极多维运动轨迹优化[J]. 航空学报, 2011, 32(8):1548-1554. XU Q, ZHU D, XU Z Y, et al. Optimization of cathode multidimensional movement path in electrochemical machining of blisk channels[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8):1548-1554(in Chinese).
[76] AHMED T M, MESALAMY A S E, YOUSSEF A, et al. Improving surface roughness of abrasive waterjet cutting process by using statistical modeling[J]. CIRP Journal of Manufacturing Science and Technology, 2018, 22:30-36.
[77] MING C K, SRINIVASU D, AXINTE D, et al. On geometrical accuracy and integrity of surfaces in multi-mode abrasive waterjet machining of NiTi shape memory alloys[J]. CIRP Annals-Manufacturing Technology, 2013, 62(1):555-558.
[78] GENT M, MENENDEZ M, TORNO S, et al. Experimental evaluation of the physical properties required of abrasives for optimizing waterjet cutting of ductile materials[J]. Wear, 2012, 284-285(4):43-51.
[79] LIU D, HUANG C, WANG J, et al. Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box-Behnken design[J]. Ceramics International, 2014, 40(6):7899-7908.
[80] 陈正文, 阮晓峰, 邹佳林, 等. 磨料水射流切割碳纤维复合材料的表面粗糙度试验[J]. 中国机械工程, 2019, 30(11):1315-1321. CHEN Z W, RUAN X F, ZOU J L, et al. Surface roughness tests of CFRP cutting by AWJ[J]. China Mechanical Engineering, 2019, 30(11):1315-1321(in Chinese).
[81] 张文超, 武美萍. 磨料水射流抛光45钢工艺参数优化[J]. 机械设计与研究, 2017, 33(6):113-117. ZHANG W C, WU M P. Optimization of process parameters of abrasive water jet polishing 45 steel[J]. Machine Design and Research, 2017, 33(6):113-117(in Chinese).
[82] RAO R V, RAI D P, BALIC J. Multi-objective optimization of abrasive waterjet machining process using Jaya algorithm and promethee method[J]. Journal of Intelligent Manufacturing, 2017, 1-27.
[83] MOHAMAD A, ZAIN A M, BAZIN N E N, et al. A process prediction model based on Cuckoo algorithm for abrasive waterjet machining[J]. Journal of Intelligent Manufacturing, 2015, 26(6):1247-52.
[84] 孙伦业, 黄绍服, 王龙, 等. 整体叶盘通道电解加工阴极侧壁绝缘性能评价试验[C]//第16届全国特种加工学术会议论文集. 淮南:安徽理工大学,2015:468-472. SUN L Y, HUANG S F, WANG L, et al. Evaluation test of insulation performance of cathode side wall in integrated blade disk channel electrolytic machining[C]//Papers Collection of The 16th National Academic Conference on Special Processing. Huainan:Anhui University of Science and Technology, 2015:468-472(in Chinese).
[85] 乔红超, 刘伟军, 赵吉宾, 等. 整体叶盘激光冲击强化设备:中国, ZL103882188A[P]. 2012-06-25. QIAO H C, LIU W J, ZHAO J B, et al. Laser shock hardening equipment for integral blade disc:China, ZL103882188A[P]. 2012-06-25(in Chinese).
[86] 张明岐, 张志金, 黄明涛. 航空发动机压气机整体叶盘电解加工技术[J]. 航空制造技术, 2016, 516(21):86-92. ZHANG M Q, ZHANG Z J, HAUNG M T. Electrochemical machining technology of aeroengine compressor blisk[J]. Aeronautical Manufacturing Process Technology, 2016, 516(21):86-92(in Chinese).
[87] 苏宇, 马铁军, 李文亚, 等. 整体叶盘线性摩擦焊接设备研制与发展现状[J]. 航空制造技术, 2016, 513(18):53-57. SU Y, MA T J, LI W Y, et al. Research and development status of linear friction welding equipment of blisk[J]. Aeronautical Manufacturing Process Technology, 2016, 513(18):53-57(in Chinese).
[88] 薛更平. 水刀切割控制系统的研究与设计[D]. 广州:广东工业大学, 2017:2-3. XUE G P. Research and design of waterjet cutting control system[D]. Guangzhou:Guangdong University of Technology, 2017:2-3(in Chinese).
[89] AXINTE D A, SRINIVASU D S, BILLINGHAM J, et al. Geometrical modelling of abrasive waterjet footprints:A study for 90° jet impact angle[J]. CIRP Annals, 2010, 59(1):341-346.
[90] AXINTE D A, KONG M C. An integrated monitoring method to supervise waterjet machining[J]. CIRP Annals, 2009, 58(1):303-306.
[91] AXINTE D A, SRINIVASU D S, KONG M C, et al. Abrasive waterjet cutting of polycrystalline diamond:A preliminary investigation[J]. International Journal of Machine Tools and Manufacture, 2009, 49(10):797-803.
[92] KONG M C, AXINTE D. Response of titanium aluminide alloy to abrasive waterjet cutting:Geometrical accuracy and surface integrity issues versus process parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2009, 223(1):19-42(in Chinese).
[93] KONG M C, AXINTE D, VOICE W. Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide[J]. Journal of Materials Processing Technology, 2010, 210(3):573-584.
[94] 戴淑波, 刘雄飞, 张岩. 罗罗公司整体叶盘表面强化新工艺[J]. 航空动力, 2019, 6(1):69-70. DAI S B, LIU X F, ZHANG Y. New surface hardening technology of Rolls-Royce's intergral blade disc[J]. Journal of Aerospace Power, 2019, 6(1):69-70(in Chinese).
[95] 涂运凤, 冯燕. 机器人七轴水射流整体叶盘切割装置:中国, ZL206764579U[P]. 2017-12-19. TU Y F, FENG Y. Seven-axis water jet integral blade disc cutting device for robot:China, ZL206764579U[P]. 2017-12-19(in Chinese).
[96] 齐娜, 王叙英. 一种七自由度水射流切割器:中国,ZL107214630A[P]. 2017-09-29. QI N, WANG X Y. A 7-DOF water jet cutter:China, ZL107214630A[P]. 2017-09-29(in Chinese).
[97] 张曙光. 基于倾角补偿的磨料水射流曲线切割技术研究[D]. 济南:山东大学, 2010:77-83. ZHANG S G. The research on curve cutting technology of abrasive water jet based on obliquity compensation[D]. Ji'nan:Shandong University, 2010:77-83(in Chinese).
Outlines

/