[1] 罗皎, 李淼泉. 高性能整体叶盘制造技术研究进展[J]. 精密成形工程, 2015, 7(6):1-7. LUO J, LI M Q. A review on the manufacting technology of high property blisk[J]. Journal of Netshape Forming Engineering, 2015, 7(6):1-7(in Chinese).
[2] 史耀耀, 段继豪, 张军锋, 等. 整体叶盘制造工艺技术综述[J]. 航空制造技术, 2012, 399(3):26-31. SHI Y Y, DUAN J H, ZHANG J F, et al. Blisk disc manufacturing process technology[J]. Aeronautical Manufacturing Process Technology, 2012, 399(3):26-31(in Chinese).
[3] 张海艳, 张连锋. 航空发动机整体叶盘制造技术国内外发展概述[J]. 航空制造技术, 2013, 443(z2):38-41. ZHANG H Y, ZHANG L F. Development overview of aero-engine integral blisk and its manufacturing technology at home and abroad[J]. Aeronautical Manufacturing Process Technology, 2013, 443(z2):38-41(in Chinese).
[4] ZHAO P, JIN H, SHI Y. Structure design and rotation control of the disc milling head in blisk manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2016, 88(5-8):1-13.
[5] 曹京霞, 弭光宝, 蔡建明, 等. 高温钛合金制造技术研究进展[J]. 钛工业进展, 2018, 35(1):1-8. CAO J X, MI E B, CAI J M, et al. Progress on manufacturing technology of high temperature titanium alloy[J]. Titanium Industry Progress, 2018, 35(1):1-8(in Chinese).
[6] FU Y, WANG X, HANG G, et al. Blade surface uniformity of blisk finished by abrasive flow machining[J]. International Journal of Advanced Manufacturing Technology, 2016, 84(5-8):1725-1735.
[7] RAAB U, LEVIN S, WAGNER L, et al. Orbital friction welding as an alternative process for blisk manufacturing[J]. Journal of Materials Processing Tech, 2015, 215(1):189-192.
[8] 黄云, 肖贵坚, 邹莱. 整体叶盘抛光技术的研究现状及发展趋势[J]. 航空学报, 2016, 37(7):2045-2064. HUANG Y, XIAO G J, ZOU L.Current situation and development trend of polishing technology for blisk[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2045-2064(in Chinese).
[9] 闫雪, 韩秀峰. 商用航空发动机整体叶盘通道加工方法分析[J]. 航空制造技术, 2015, 481(12):66-69. YAN X, HAN X F. Slot roughing process analysis of commercial aeroengine blisk[J]. Aeronautical Manufacturing Process Technology, 2015, 481(12):66-69(in Chinese).
[10] KLOCKE F, ZEIS M, KLINK A, et al. Technological and economical comparison of roughing strategies via milling, sinking-EDM, wire-EDM and ECM for titanium-and nickel-based blisks[J]. CIRP Journal of Manufacturing Science and Technology, 2013, 6(3):198-203.
[11] 任军学, 姜振南, 姚倡锋, 等. 开式整体叶盘四坐标高效开槽插铣工艺方法[J]. 航空学报, 2008, 30(6):1692-1698. REN J X, JIANG Z N, YAO C F, et al. Process for four-axis high efficiency slot plunge milling of open blisk[J]. Acta Aeronautica et Astronautica Sinica, 2008, 30(6):1692-1698(in Chinese).
[12] 张为民, 宋学坤, 郝小忠, 等. 基于特征的开式整体叶盘插铣粗加工刀轴矢量优化生成方法[J]. 航空制造技术, 2014, 451(7):76-79. ZHANG W M, SONG X K, HAO X Z, et al. Feature based optimal tool axis generation method for plunge milling in rough machining of open blisk[J]. Aeronautical Manufacturing Process Technology, 2014, 451(7):76-79(in Chinese).
[13] 田荣鑫, 邓霜, 张晓峰, 等. 基于控制线的开式整体叶盘环形刀四轴加工算法研究[J]. 航空制造技术, 2016, 513(18):88-94. TIAN R X, DENG S, ZHANG X F, et al. Algorithm research on the four-axis circular cutter machining of open blisk based on the control curve[J]. Aeronautical Manufacturing Process Technology, 2016, 513(18):88-94(in Chinese).
[14] AHMED D H, NASER J, DEAM R T. Particles impact characteristics on cutting surface during the abrasive water jet machining:Numerical study[J]. Journal of Materials Processing Technology, 2016, 232:116-130.
[15] MONTESANO J, BOUGHERARA H, FAWAZ Z. Influence of drilling and abrasive water jet induced damage on the performance of carbon fabric/epoxy plates with holes[J]. Composite Structures, 2017, 163:257-266.
[16] HASHISH M. Waterjets for aeroengine applications[C]//The 24th International Conference on Water Jetting, 2018:207-217.
[17] DONG C, DAVIES I J. Flexural properties of E-Glass and TR50S carbon fiber reinforced epoxy hybrid composites[J]. Journal of Materials Engineering and Performance, 2013, 22(1):41-49.
[18] SCHWARTZENTRUBER J, PAPINI M, SPELT J K. Characterizing and modelling delamination of carbon-fiber epoxy laminates during abrasive waterjet cutting[J]. Composites Part A:Applied Science and Manufacturing, 2018, 112:299-314.
[19] SCHWARTZENTRUBER J, SPELT J K, PAPINI M. Prediction of surface roughness in abrasive waterjet trimming of fiber reinforced polymer composites[J]. International Journal of Machine Tools and Manufacture, 2017, 122:1-17.
[20] HEJJAJI A, ZITOUNE R, CROUZEIX L, et al. Surface and machining induced damage characterization of abrasive water jet milled carbon/epoxy composite specimens and their impact on tensile behavior[J]. Wear, 2017, 376:1356-1364.
[21] HASHISH M, 飞机复合材料磨料水射流加工[J]. 航空制造技术, 2009(15):54-56. HASHISH M. Machining airframe composite with abrasive waterjet[J]. Aeronautical Manufacturing Process Technology, 2009(15):54-56(in Chinese).
[22] SRIVASTAVA A K, NAG A, DIXIT A R, et al. Surface integrity in tangential turning of hybrid MMC A359/B4 C/Al2O3 by abrasive waterjet[J]. Journal of Manufacturing Processes, 2017, 28:11-20.
[23] KLOCKE F, NOVOVIC D, ELFIZY A, et al. Abrasive machining of advanced aerospace alloys and composites[J]. CIRP Annals-Manufacturing Technology, 2015, 64(2):581-604.
[24] PICKERING E G, O'MASTA M R, WADLEY H N G, et al. Effect of confinement on the static and dynamic indentation response of model ceramic and cermet materials[J]. International Journal of Impact Engineering, 2017, 110:123-137.
[25] 王辉, 周明星, 吴宝海, 等. 航空发动机先进材料高性能零部件制造技术进展[J]. 航空制造技术, 2015(22):47-51. WANG H, ZHOU M X, WU B H, et al. Recent advances on manufacturing technologies of aeroengine[J]. Aeronautical Manufacturing Process Technology, 2015(22):47-51(in Chinese).
[26] 张金勇, 李金山, 陈正, 等. 具有高强高塑性和良好加工硬化行为的新型亚稳β钛合金设计及发展[J]. 稀有金属材料与工程, 2018, 47(9):185-190. ZHANG J Y, LI J S, CHEN Z, et al. Design and development of new β titanium alloys with high strength, large ductility and improved strain-hardening behavior[J]. Rare Metal Materials and Engineering, 2018, 47(9):185-190(in Chinese).
[27] 逯冉. 一种兼具高强度、高应变硬化率和高塑性的新型钛合金[J]. 世界有色金属, 2015, 3:31-34. LÙ R. A new titanium alloy with a combination of high strength,high strain hardening and improved ductility[J]. World Nonferrous Metal, 2015, 3:31-34(in Chinese).
[28] KONG M, AXINTE D, VOICE W. Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide[J]. Journal of Materials Processing Technology, 2010, 210(3):573-584.
[29] AYED Y, GERMAIN G, AMMAR A, et al. Tool wear analysis and improvement of cutting conditions using the high-pressure water-jet assistance when machining the Ti17 titanium alloy[J]. Precision Engineering, 2015, 42:294-301.
[30] AYED Y, GERMAIN G, AMMAR A, et al. Degradation modes and tool wear mechanisms in finish and rough machining of Ti17 Titanium alloy under high-pressure water jet assistance[J]. Wear, 2013, 305(2):228-237.
[31] HLAVČ L M, GEMBALOV L, ŠTĚP N P, et al. Improvement of abrasive water jet machining accuracy for titanium and TiNb alloy[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(12):1733-1740.
[32] PATEL D, TANDON P. Experimental investigations of thermally enhanced abrasive water jet machining of hard-to-machine metals[J]. CIRP Journal of Manufacturing Science and Technology, 2015, 10:92-101.
[33] KONG M, AXINTE D, VOICE W. An innovative method to perform maskless plain waterjet milling for pocket generation:a case study in Ti-based superalloys[J]. International Journal of Machine Tools and Manufacture, 2011, 51:642-648.
[34] 付青峰, 杨细莲, 刘克明. 航空发动机高温材料的研究现状及展望[J]. 热处理技术与装备, 2018, 39(3):69-73. FU Q F, YANG X L, LIU K M. Current status of research and prospect of high temperature materials for aeroengine[J]. Rechuli Jishu Yu Zhuangbei, 2018, 39(3):69-73(in Chinese).
[35] 王妙全, 田成刚, 南洋, 等. 新型高温合金718Plus的性能特点、航空应用和发展趋势[J]. 材料导报, 2017, 31(19):72-79. WANG M Q, TIAN C G, NAN Y, et al. A Review on 718Plus, the new superalloy:performance, aerospace application and development trend[J]. Materials Review, 2017, 31(19):72-79(in Chinese).
[36] KONG M, AXINTE D, VOICE W. Challenges in using waterjet machining of NiTi shape memory alloys:An analysis of controlled-depth milling[J]. Journal of Materials Processing Technology, 2011, 211(6):959-971.
[37] 吴明阳, 田兆晖, 于永新, 等. PCBN刀具切削高温合金切削力试验分析[J]. 航空制造技术, 2017, 60(22):101-105. WU M Y, TIAN Z H, YU Y X, et al. Experimental study on cutting force in turning superalloy by PCBN cutting tool[J]. Aeronautical Manufacturing Process Technology, 2017, 60(22):101-105(in Chinese).
[38] KLOCKE F, SCHMITT R, ZEIS M, et al. Technological and economical assessment of alternative process chains for blisk manufacture[J]. Procedia CIRP, 2015, 35:67-72.
[39] 杨维学. 高压水射流技术在整体叶盘高效加工中的应用[J]. 航空发动机, 2019, 45(3):99-102. YANG W X. Application of high pressure water jet technology in high efficiency processing of blisk[J]. Aeroengine, 2019, 45(3):99-102(in Chinese).
[40] HASSAN A I, KOSMOL J. Dynamic elastic-plastic analysis of 3D deformation in abrasive waterjet machining[J]. Journal of Materials Processing Technology, 2001, 113(1):337-341.
[41] TAKAFFOL I, PAPIN I. Numerical simulation of solid particle impacts on Al6061-T6 Part II:Materials removal mechanisms for impact of multiple angular particles[J]. Wear, 2012, 296:648-655.
[42] ARABNEJAD H, MANSOURI A, SHIRAZI S A, et al. Development of mechanistic erosion equation for solid particles[J]. Wear, 2015, 332:44-50.
[43] FINNIE I, MCFADDEN D H. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence[J]. Wear, 1977, 48(1):181-190.
[44] BITTER J G A. A study of erosion phenomena part I[J]. Wear, 1963, 6(1):5-21.
[45] TILLY G P. A two stage mechanism of ductile erosion[J]. Wear, 1973, 23(1):87-96.
[46] MAGNE E. Generalized law of erosion:application to various alloys and intermetallics[J]. Wear, 1995, 183(3):500-510.
[47] HASCALIK A, ÇAYDAŞ U, GRN H. Effect of traverse speed on abrasive waterjet machining of Ti-6Al-4V alloy[J]. Materials and Design, 2007, 28(6):1953-1957.
[48] CHEN F L, SIORES E. The effect of cutting jet variation on surface striation formation in abrasive water jet cutting[J]. Journal of Materials Processing Technology, 2003, 41(10):1479-1486.
[49] SHIPWAY P H, FOWLER G, PASHBY I R. Characteristics of the surface of a titanium alloy following milling with abrasive waterjets[J]. Wear, 2005, 258(1):123-132.
[50] SHANMUGAM D K, NGUYEN T, WANG J. A study of delamination on graphite/epoxy composites in abrasive waterjet machining[J]. Composites Part A:Applied Science and Manufacturing, 2008, 39(6):923-929.
[51] MIESZALA M, TORRUBIA P L, AXINTE D A, et al. Erosion mechanisms during abrasive waterjet machining:Model microstructures and single particle experiments[J]. Journal of Materials Processing Technology, 2017, 247:92-102.
[52] LIU H T. Applications of abrasive-waterjets for machining fatigue-critical aerospace aluminum Parts[C]//Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2009:1-18.
[53] SHELDON G, FINNIE I. The mechanism of material removal in the erosive cutting of brittle materials[J]. Journal of Engineering for Industry, 1966, 88(4):393-399.
[54] EVANS A G, GULDEN M E, ROSENBLATT M. Impact damage in brittle materials in the elastic-plastic response regime[J]. Proceedings of the Royal Society of London, 1978, 361:343-365.
[55] MOMBER A. Stress-strain relation for water-driven particle erosion of quasi-brittle materials[J]. Theoretical and Applied Fracture Mechanics, 2001, 35(1):19-37.
[56] TANGWARODOMNUKUN V, WANG J, HUANG C Z, et al. An investigation of hybrid laser-waterjet ablation of silicon substrates[J]. International Journal of Machine Tools and Manufacture, 2012, 56(1):39-49.
[57] TANGWARODOMNUKUN V, WANG J, HUANG C Z, et al. Heating and material removal process in hybrid laser-waterjet ablation of silicon substrates[J]. International Journal of Machine Tools and Manufacture, 2014, 79(4):1-16.
[58] ZHE L, HUANG C, ZHU H, et al. A research on ultrasonic-assisted abrasive waterjet polishing of hard-brittle materials[J]. International Journal of Advanced Manufacturing Technology, 2015, 78:1361-1369.
[59] ZHE L, HUANG C, ZHU H, et al. FEM analysis on the abrasive erosion process in ultrasonic-assisted abrasive waterjet machining[J]. International Journal of Advanced Manufacturing Technology, 2015, 78:1641-1649.
[60] SHU W, ZHANG S, WU Y, et al. A key parameter to characterize the kerf profile error generated by abrasive water-jet[J]. International Journal of Advanced Manufacturing Technology, 2017, 90:1265-1275.
[61] LIU H, WANG J, KELSON N, et al. A study of abrasive waterjet characteristics by CFD simulation[J]. Journal of Materials Processing Technology, 2004, 153-154(1):488-493.
[62] 蔡志刚, 陈晓川, 王迪, 等. 碳碳复合材料的水射流钻孔技术研究[J]. 机械工程学报, 2019, 55(3):226-232. CAI Z G, CHEN X C, WANG D, et al. Research on water jet drilling technology for carbon-carbon composites[J]. Journal of Mechanical Engineering, 2019, 55(3):226-232(in Chinese).
[63] 张成光, 张勇, 张飞虎, 等. 磨料水射流加工去除模型研究[J]. 机械工程学报, 2015, 51(7):188-196. ZHANG C G, ZHANG Y, ZHANG F H, et al.Study on removal model of abrasive waterjet machining[J]. Journal of Mechanical Engineering, 2015, 51(7):188-196(in Chinese).
[64] ZHAO W, GUO C W. Topography and microstructure of the cutting surface machined with abrasive waterjet[J]. International Journal of Advanced Manufacturing Technology, 2014, 73:941-947.
[65] KONG M C, ANWAR S, BILLINGHAM J, et al. Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets:Part I-Single straight paths[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1):58-68.
[66] TORRUBIA P L, AXINTE D A, BILLINGHAM J. Stochastic modelling of abrasive waterjet footprints using finite element analysis[J]. International Journal of Machine Tools and Manufacture, 2015, 95:39-51.
[67] GUILLERNA A B, AXINTE D, BILLINGHAM J. The linear inverse problem in energy beam processing with an application to abrasive waterjet machining[J]. International Journal of Machine Tools and Manufacture, 2015, 99(1):34-42.
[68] PETE R, MILES P, HENNING A. Roles of taper compensation in AWJ ultra-precision machining[C]//The 23rd International Conference on Water Jetting Seattle, 2016:33-46.
[69] SHANMUGAM D K, WANG J, LIU H. Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique[J]. International Journal of Machine Tools and Manufacture, 2008, 48(14):1527-1534.
[70] LV Z, HOU R, HUANG C, et al. Investigation on erosion mechanism in ultrasonic assisted abrasive waterjet machining[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94:3741-3755.
[71] QI H, WEN D, LU C, et al. Numerical and experimental study on ultrasonic vibration-assisted micro-channelling of glasses using an abrasive slurry jet[J]. International Journal of Mechanical Sciences, 2016, 110:94-107.
[72] GUILLERNA A B, AXINTE D, BILLINGHAM J. The linear inverse problem in energy beam processing with an application to abrasive waterjet machining[J]. International Journal of Machine Tools and Manufacture, 2015, 99:34-42.
[73] 周大鹏. 磨料射流精密切割质量控制与补偿的研究[D]. 徐州:中国矿业大学, 2013:50-57. ZHOU D P. Study on accurate quality control of AWJ machining and its compensation technology[D]. Xuzhou:China University of Mining and Technology, 2013:50-57(in Chinese).
[74] 王舒. 厚材料3D水射流精密切割切缝特性研究[D]. 重庆:重庆大学, 2017:13-17. WANG S. Study on kerf characterization of thick materials machined with 3D waterjet precision cutting[D]. Chongqing:Chongqing University, 2017:13-17(in Chinese).
[75] 徐庆, 朱荻, 徐正扬, 等. 整体叶盘通道电解加工电极多维运动轨迹优化[J]. 航空学报, 2011, 32(8):1548-1554. XU Q, ZHU D, XU Z Y, et al. Optimization of cathode multidimensional movement path in electrochemical machining of blisk channels[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8):1548-1554(in Chinese).
[76] AHMED T M, MESALAMY A S E, YOUSSEF A, et al. Improving surface roughness of abrasive waterjet cutting process by using statistical modeling[J]. CIRP Journal of Manufacturing Science and Technology, 2018, 22:30-36.
[77] MING C K, SRINIVASU D, AXINTE D, et al. On geometrical accuracy and integrity of surfaces in multi-mode abrasive waterjet machining of NiTi shape memory alloys[J]. CIRP Annals-Manufacturing Technology, 2013, 62(1):555-558.
[78] GENT M, MENENDEZ M, TORNO S, et al. Experimental evaluation of the physical properties required of abrasives for optimizing waterjet cutting of ductile materials[J]. Wear, 2012, 284-285(4):43-51.
[79] LIU D, HUANG C, WANG J, et al. Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box-Behnken design[J]. Ceramics International, 2014, 40(6):7899-7908.
[80] 陈正文, 阮晓峰, 邹佳林, 等. 磨料水射流切割碳纤维复合材料的表面粗糙度试验[J]. 中国机械工程, 2019, 30(11):1315-1321. CHEN Z W, RUAN X F, ZOU J L, et al. Surface roughness tests of CFRP cutting by AWJ[J]. China Mechanical Engineering, 2019, 30(11):1315-1321(in Chinese).
[81] 张文超, 武美萍. 磨料水射流抛光45钢工艺参数优化[J]. 机械设计与研究, 2017, 33(6):113-117. ZHANG W C, WU M P. Optimization of process parameters of abrasive water jet polishing 45 steel[J]. Machine Design and Research, 2017, 33(6):113-117(in Chinese).
[82] RAO R V, RAI D P, BALIC J. Multi-objective optimization of abrasive waterjet machining process using Jaya algorithm and promethee method[J]. Journal of Intelligent Manufacturing, 2017, 1-27.
[83] MOHAMAD A, ZAIN A M, BAZIN N E N, et al. A process prediction model based on Cuckoo algorithm for abrasive waterjet machining[J]. Journal of Intelligent Manufacturing, 2015, 26(6):1247-52.
[84] 孙伦业, 黄绍服, 王龙, 等. 整体叶盘通道电解加工阴极侧壁绝缘性能评价试验[C]//第16届全国特种加工学术会议论文集. 淮南:安徽理工大学,2015:468-472. SUN L Y, HUANG S F, WANG L, et al. Evaluation test of insulation performance of cathode side wall in integrated blade disk channel electrolytic machining[C]//Papers Collection of The 16th National Academic Conference on Special Processing. Huainan:Anhui University of Science and Technology, 2015:468-472(in Chinese).
[85] 乔红超, 刘伟军, 赵吉宾, 等. 整体叶盘激光冲击强化设备:中国, ZL103882188A[P]. 2012-06-25. QIAO H C, LIU W J, ZHAO J B, et al. Laser shock hardening equipment for integral blade disc:China, ZL103882188A[P]. 2012-06-25(in Chinese).
[86] 张明岐, 张志金, 黄明涛. 航空发动机压气机整体叶盘电解加工技术[J]. 航空制造技术, 2016, 516(21):86-92. ZHANG M Q, ZHANG Z J, HAUNG M T. Electrochemical machining technology of aeroengine compressor blisk[J]. Aeronautical Manufacturing Process Technology, 2016, 516(21):86-92(in Chinese).
[87] 苏宇, 马铁军, 李文亚, 等. 整体叶盘线性摩擦焊接设备研制与发展现状[J]. 航空制造技术, 2016, 513(18):53-57. SU Y, MA T J, LI W Y, et al. Research and development status of linear friction welding equipment of blisk[J]. Aeronautical Manufacturing Process Technology, 2016, 513(18):53-57(in Chinese).
[88] 薛更平. 水刀切割控制系统的研究与设计[D]. 广州:广东工业大学, 2017:2-3. XUE G P. Research and design of waterjet cutting control system[D]. Guangzhou:Guangdong University of Technology, 2017:2-3(in Chinese).
[89] AXINTE D A, SRINIVASU D S, BILLINGHAM J, et al. Geometrical modelling of abrasive waterjet footprints:A study for 90° jet impact angle[J]. CIRP Annals, 2010, 59(1):341-346.
[90] AXINTE D A, KONG M C. An integrated monitoring method to supervise waterjet machining[J]. CIRP Annals, 2009, 58(1):303-306.
[91] AXINTE D A, SRINIVASU D S, KONG M C, et al. Abrasive waterjet cutting of polycrystalline diamond:A preliminary investigation[J]. International Journal of Machine Tools and Manufacture, 2009, 49(10):797-803.
[92] KONG M C, AXINTE D. Response of titanium aluminide alloy to abrasive waterjet cutting:Geometrical accuracy and surface integrity issues versus process parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2009, 223(1):19-42(in Chinese).
[93] KONG M C, AXINTE D, VOICE W. Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide[J]. Journal of Materials Processing Technology, 2010, 210(3):573-584.
[94] 戴淑波, 刘雄飞, 张岩. 罗罗公司整体叶盘表面强化新工艺[J]. 航空动力, 2019, 6(1):69-70. DAI S B, LIU X F, ZHANG Y. New surface hardening technology of Rolls-Royce's intergral blade disc[J]. Journal of Aerospace Power, 2019, 6(1):69-70(in Chinese).
[95] 涂运凤, 冯燕. 机器人七轴水射流整体叶盘切割装置:中国, ZL206764579U[P]. 2017-12-19. TU Y F, FENG Y. Seven-axis water jet integral blade disc cutting device for robot:China, ZL206764579U[P]. 2017-12-19(in Chinese).
[96] 齐娜, 王叙英. 一种七自由度水射流切割器:中国,ZL107214630A[P]. 2017-09-29. QI N, WANG X Y. A 7-DOF water jet cutter:China, ZL107214630A[P]. 2017-09-29(in Chinese).
[97] 张曙光. 基于倾角补偿的磨料水射流曲线切割技术研究[D]. 济南:山东大学, 2010:77-83. ZHANG S G. The research on curve cutting technology of abrasive water jet based on obliquity compensation[D]. Ji'nan:Shandong University, 2010:77-83(in Chinese).