The compatibility of aircraft-missile separation from an internal weapons bay in advanced fighter aircraft is predicted and evaluated by using the wind tunnel drop-test that is similar to kinematics dynamics. The trajectory and attitude angle variation law of internal missile are obtained under different initial conditions of Mach number, angle of attack, length-to-depth ratio, residual number of missile in the bay, ejection forces and deployment of folding wings. The influence of these factors on the compatibility for drop separation of internal missiles is studied. The results show that the pitching angle of the missile body is in a bow state when the angle of attack is 0°, 2°, or 3° in the supersonic flight state(Mach number 1.5), which is conducive to attack the enemy target in the lower front of the aircraft. Under the given initial separation conditions, the internal missile can be safely separated in two different compartment length-depth ratios, but the pitching direction motion of the internal missile is more prominent. The residual number of weapons in the missile compartment has little influence on the separation characteristics of the internal missile and the missile can quickly stay away from the interference flow field of the carrier aircraft and the pitch angle of the missile body is always in low-head state after separation. With the increase of the initial launching speed of the internal missile, the missile body can rapidly pass through the downwash flow field of the carrier aircraft, which is beneficial to the safe separation of the internal missile and the carrier aircraft. The aerodynamic layout of the missile has influence on the separation compatibility for the internal missile.
SONG Wei
,
AI Bangcheng
,
JIANG Zenghui
,
LU Wei
. Prediction and assessment of drop separation compatibility of internal weapons by wind tunnel drop-test[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020
, 41(6)
: 523415
-523415
.
DOI: 10.7527/S1000-6893.2019.23415
[1] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47:186-216.
[2] 杨党国. 内埋武器舱气动声学特性与噪声抑制研究[D]. 绵阳:中国空气动力研究与发展中心,2010:3-4. YANG D G. Studies on aeroacoustic characteristics and noise suppressions for internal weapon bays[D]. Mianyang:China Aerodynamics Research and Development Center, 2010:3-4(in Chinese).
[3] FLORA T J,REEDER M F. Dynamic store release of ice models from a cavity into Mach 2.9 flow[J]. Journal of Aircraft, 2014, 51(6):1927-1941.
[4] SHALAEV V,FEDOROV A, MALMUTH N. Dynamics of slender bodies separating from rectangular cavities[J]. AIAA Journal, 2002, 40(3):517-525.
[5] 尉建刚,桑为民,雷熙薇. 内埋式武器舱的流动及气动特性分析[J]. 飞行力学,2011,29(2):29-32. WEI J G,SANG W M,LEI X W. Analysis of the flow characteristics and aerodynamic problems in internal weapons bay[J]. Flight Dynamics,2011,29(2):29-32(in Chinese).
[6] 杨俊,李骞,谢云恺,等. 超声速内埋武器分离数值研究[J]. 弹箭与制导学报,2015,35(4):171-174. YANG J,LI Q,XIE Y K,et al. Numerical studies on store separation from a weapon bay at supersonic speed[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2015, 35(4):171-174(in Chinese).
[7] 吴继飞,罗新福,范召林. 内埋式弹舱流场特性及武器分离特性改进措施[J]. 航空学报,2009,30(10):1840-1845. WU J F,LUO X F,FAN Z L. Flow control method to improve cavity flow and store separation characteristics[J]. Acta Aeronautica et Astronautica Sinica,2009,30(10):1840-1845(in Chinese).
[8] 冯金富,杨松涛,刘文杰. 战斗机武器内埋关键技术综述[J]. 飞航导弹,2010(7):71-74. FENG J F, YANG S T, LIU W J. Review on the crucial technique for internal weapon[J]. Cruise Missile, 2010(7):71-74(in Chinese).
[9] SHIPMAN J,ARUNAJATESAN S, CAVALLO P A,et al. Flow control for enhanced store separation:AIAA-2007-1239[R]. Reston,VA:AIAA,2007.
[10] 王巍. 导弹内埋气动特性研究与仿真[D]. 哈尔滨:哈尔滨工程大学,2011. WANG W. Aerodynamic studies and simulation of missiles internal[D]. Harbin:Harbin Engineering University,2011(in Chinese).
[11] 唐上钦,黄长强,翁兴伟. 考虑气动干扰的导弹内埋式发射弹道研究[J]. 弹箭与制导学报,2013,33(3):138-142. TANG S Q,HUANG C Q,WENG X W. The study on trajectory of missile separating from cavity with aerodynamic Interference considered[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2013,33(3):138-142(in Chinese).
[12] 冯必鸣,聂万胜,车学科. 初始投放条件对内埋式导弹分离轨迹的影响[J]. 飞行力学,2009,27(4):62-65. FENG B M,NIE W S,CHE X K. Effect of initial conditions on separation trajectory of the internal missile[J]. Flight Dynamics,2009,27(4):62-65(in Chinese).
[13] 李周复. 风洞特种试验技术[M]. 北京:航空工业出版社,2010:88-161. LI Z F. Wind tunnel special tests technique[M]. Beijing:Aviation Industry Press,2010:88-161(in Chinese).
[14] 鲍国华. 风洞特种实验[M]. 西安:西北工业大学出版社,1990:123-126. BAO G H. Wind tunnel special testing[M]. Xi'an:Press of Northwestern Polytechnical University, 1990:123-126(in Chinese).
[15] RUDY A J,MICHAEL J S,JAMES E G. Store separation trajectory deviations due to unsteady weapons bay aerodynamics:AIAA-2008-0188[R]. Reston:AIAA,2008.
[16] STALLINGS R L. Store separation from cavities at supersonic speeds:AIAA-1982-0372[R]. Reston:AIAA,1982.
[17] 江宗辉,张鹏,刘毅. 变深度投放舱内埋式投放物投放风洞试验研究[J]. 运输机工程,2013(1):6-10. JIANG Z H, ZHANG P, LIU Y. Wind tunnel drop test for internal weapon from variable depth bay[J]. Transport Engineering, 2013(1):6-10(in Chinese).
[18] 金时彧. 内埋式弹舱流场及武器投放轨迹研究[D]. 南京:南京航空航天大学,2014. JIN S Y. Research on the flow field of weapon bay and the trajectory of missile separating[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2014(in Chinese).
[19] 宋威,鲁伟,蒋增辉,等. 内埋武器高速风洞弹射投放模型试验关键技术研究[J]. 力学学报,2018,50(6):1346-1355. SONG W,LU W,JIANG Z H, et al. The crucial technique investigation of wind-tunnel drop-model testing for the supersonic internal weapons[J]. Chinese Journal of Theoretical and Applied Mechanics,2018,50(6):1346-1355(in Chinese).