Solid Mechanics and Vehicle Conceptual Design

Emergency load limited system for aircraft structural strength test

  • WANG Xintao ,
  • DU Xing
Expand
  • 1. Aircraft Strength Research Institute of China, Xi'an 710065, China;
    2. Aviation Technology Key Laboratory of Full Scale Aircraft Structure Static and Fatigue Test, Xi'an 710065, China

Received date: 2019-08-02

  Revised date: 2019-09-17

  Online published: 2019-09-30

Abstract

The number of main landing gears for multi-wheels and multi-struts landing gear aircraft is large, and the test machine and test equipment are heavy. During the test emergency unloading, the weight of test pieces and equipment, as well as the inconsistencies in the rapid release of the accumulated energy generated by the deformation of test pieces during the loading process, are likely to produce a large impact load on the support point structure. And the uncontrollable load will affect the test assessment, exposing potential safety hazards. A load limited system is designed to meet the strength test requirements of multi-wheels and multi-struts landing gear aircraft. In emergency unloading or test pause, the proposed system can set a load for the non-support landing gear, ensuring that all generated loads are assigned to all landing gears as required to prevent overloading of the support in the emergency moment. During the test, the test active load can be applied to non-support landing gear. The feasibility of the system principle is verified by simulation software. Based on the system principle, the load limited system is designed, and its structure and performance are verified. And the application debugging is carried out in the whole machine fatigue test of a certain type of aircraft. The results show that the system can fully meet the test requirements.

Cite this article

WANG Xintao , DU Xing . Emergency load limited system for aircraft structural strength test[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(2) : 223332 -223332 . DOI: 10.7527/S1000-6893.2019.23332

References

[1] 中国飞机强度研究所. 航空结构强度技术[M]. 北京:航空工业出版社, 2013. Aircraft Strength Research Institute of China. Aircraft structure strength technology[M]. Beijing:Aviation Industry Press, 2013(in Chinese).
[2] 强宝平. 飞机结构强度地面试验[M]. 北京:航空工业出版社, 2014. QIANG B P. Ground testing for aircraft structure[M]. Beijing:Aviatin Industry Press, 2014(in Chinese).
[3] 王凤山. 飞机结构强度试验使用指南[M]. 西安:中国飞机强度研究所, 2007. WANG F S. Aircraft structure strength test guide[M]. Xi'an:Aircraft Strength Research Institute of China, 2007(in Chinese).
[4] 郑建军, 唐吉运, 王彬文. C919飞机全机静力试验技术[J]. 航空学报, 2019, 40(1):522364. ZHENG J J, TANG J Y, WANG B W. Static test technology for C919 full-scall aircraft structure[J]. Acta Aeronautica et Astronatica Sinica, 2019, 40(1):522364(in Chinese).
[5] 刘玮, 滕青, 刘冰. 基于地板结构的机身双层双向加载技术[J]. 航空学报, 2018, 39(5):221712. LIU W, TENG Q, LIU B. Double-deck bi-directional loading technology based on airliner cabin floor structure[J]. Acta Aeronautica et Astronatica Sinica, 2018, 39(5):221712(in Chinese).
[6] 刘冰, 夏峰, 张建锋, 等. 全尺寸飞机静强度试验扣重技术研究[C]//第六届中国航空学会青年科技论坛论文集(上册). 北京:航空工业出版社, 2014:425-429. LIU B, XIA F, ZHANG J F, et al. Research of weight deduct of static test of full scale aircraft[C]//Proceedings of the 6th CSAA Youth Science and Technology form (book 1). Beijing:Aviation Industry Press, 2014:425-429(in Chinese).
[7] LIU B, ZHANG L, XIA F. Research of weight deduction in full-scale aircraft static strength test[C]//2014 Asia-pacific International Symposium on Aerospace Technology. Beijing:CSAA, 2014:1-5.
[8] 姜百盈. 大型飞机的多轮式起落架总体布置研究[J]. 航空工程进展, 2010, 1(1):45-48. JIANG B Y. Study on general arrangement of multi wheels landing gear of large aircrafts[J]. Advances in Aeronautical Science and Engineering, 2010, 1(1):45-48(in Chinese).
[9] 郑蓝. 大重载飞机起落架方案设计[D]. 南京:南京航空航天大学, 2009. ZHENG L. Conceptual design of landing gear for heavy load aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
[10] 张兆斌, 李明强, 李健. 大型运输机全机静力试验总体规划与实施研究[J]. 航空科学技术, 2015, 26(10):25-27. ZHANG Z B, LI M Q, LI J. Research on comprehensive planning and implementation for full-scale static test of large transporter[J]. Aeronautical Science and Technology, 2015, 26(10):25-27(in Chinese).
[11] 刘权良, 尹伟, 夏峰. 飞机结构静强度试验支持方案的确定[J]. 航空科学技术, 2012(5):32-35. LIU Q L, YIN W, XIA F. The determination of support scheme for aircraft static strength verification test[J]. Aeronautical Science & Technology, 2012(5):32-35(in Chinese).
[12] IABG. An efficient load introduction concept for the A380 full scale fatigue test[C]//ICAF, 2005:365-376.
[13] 陈曦, 解宁, 郭津津. 基于AMESim的比例阀控液压缸系统的仿真与分析[J]. 机床与液压, 2013, 41(13):160-163. CHEN X, XIE N, GUO J J. Simulation analysis for proportional valve controlled cylinder hydraulic system based on AMESim[J]. Chinese Hydraulics and Pneumatics, 2013, 41(13):160-163(in Chinese).
[14] 康帅帅, 贺元成, 孟志明. LMS.AMESim仿真软件在液压系统中的应用[J]. 制造业信息化, 2014(3):163-165. KANG S S, HE Y C, MENG Z M. Application of LMS.AMESim simulation software in the hydraulic system[J]. Manufacturing Informatization, 2014(3):163-165(in Chinese).
[15] 冯静, 李卫民, 甘元强. 基于AMESim的溢流阀动态特性研究[J]. 机械工程师, 2009(9):41-43. FENG J, LI W M, GAN Y Q. The research of a relief valve in AMESim[J]. Mechanical Engineer, 2009(9):41-43(in Chinese).
[16] 刘昕晖, 陈晋市. AMESim仿真技术在液压系统设计分析中的应用[J]. 液压与气动, 2015(11):1-6. LIU X H, CHEN J S. Application of AMESim in the design and analysis of hydraulic system[J]. Chinese Hydraulics and Pneumatics, 2015(11):1-6(in Chinese).
[17] 王慧, 蒋成吉, 刘琦. 单气室油气弹簧工作特性的建模与仿真分析[J]. 计算机仿真, 2016, 33(6):197-200. WANG H, JIANG C J, LIU Q. Modeling and simulation analysis of single chamber hydragas spring working characteristics[J]. Computer Simulation, 2016, 33(6):197-200(in Chinese).
[18] 黄贵川, 冉启燕, 李胜, 等. 隔膜蓄能器瞬时流量仿真及试验[J]. 液压与气动, 2017(11):46-49. HUANG G C, RAN Q Y, LI S, et al. Instantaneous flow rate simulation and test of diaphragm accumulator[J]. Chinese Hydraulics and Pneumatics, 2017(11):46-49(in Chinese).
[19] 刘刚, 陈思忠, 王文竹, 等. 基于AMESim和Simulink的油气悬架的仿真与试验[J]. 振动、测试与诊断, 2016, 36(2):346-350. LIU G, CHEN S Z, WANG W Z, et al. Simulation and experimental research of a novel hydro-pneumatic suspension based on AMESim and Simulink[J]. Journal of Vibration, Measurement and Diagnosis, 2016, 36(2):346-350(in Chinese).
[20] 徐轶群, 张宏宇, 程斐, 等. 基于Matlab的油气弹簧特性试验数据处理研究[J]. 液压气动与密封, 2017(1):39-41. XU Y Q, ZHANG H Y, CHENG F, et al. Research on the data processing of hydro-pneumatic suspension characteristic experiment based on Matlab[J]. Hydraulics Pneumatics and Seals, 2017(1):39-41(in Chinese).
[21] 李伟. 大重载飞机起落架缓冲系统方案设计及动态性能分析[D]. 南京:南京航空航天大学, 2009. LI W. Prelimilary design of absorbor system and analysis of dynamic performance for the heavy load aircraft landing gear[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
[22] 何晋飞, 陈烜, 鲁鹏勇, 等. 插装式二维(2D)伺服阀的理论分析与实验研究[J]. 航空学报, 2019, 40(5):422590. HE J F, CEHN X, LU P Y, et al. Theoretical analysis and experimental study on two-dimensional cartridge servo valve[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):422590(in Chinese).
[23] 顾根泉. 开关液压机构中蓄能器压力计算与分析[J].液压与气动, 2017(1):100-104. GU G Q. Pressure calculation and analysis of accumulator in hydraulic mechanism of switches[J]. Chinese Hydraulics and Pneumatics, 2017(1):100-104(in Chinese).
[24] 孔令猛. 气弹簧选型的设计思路[J]. 底盘与配件, 2012(10):99-101. KONG L M. The design idea of gas spring selection[J]. Chassis and Parts, 2012(10):99-101(in Chinese).
[25] 赵静一, 曹晓擎, 刘仕元, 等. 牙轮钻机蓄能器充液系统的研究[J]. 液压与气动, 2017(1):57-60. ZHAO J Y, CAO X Q, LIU S Y, et al. Rotary drill accumulator charging system[J]. Chinese Hydraulics and Pneumatics, 2017(1):57-60(in Chinese).
[26] 李玉柱, 贺五洲. 工程流体力学(上册)[M]. 北京:清华大学出版社, 2006. LI Y Z, HE W Z. Engineering fluid mechanics (Volume 1)[M]. Beijing:Tsinghua University Press, 2006(in Chinese).
[27] 董林福, 赵春燕. 液压与气压传动[M]. 北京:化学工业出版社, 2006. DONG L F, ZHAO C Y. Hydraulic and pneumatic transmission[M]. Beijing:Chemical Industry Press, 2006(in Chinese).
Outlines

/