Specical Topic of Numerical Optimization and Design of Aircraft Aerodynamic Shape

An efficient adaptive global optimization method suitable for aerodynamic optimization

  • LI Chunna ,
  • ZHANG Yangkang
Expand
  • Aerospace Flight Vehicle Design Key Laboratory, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2019-08-08

  Revised date: 2019-08-25

  Online published: 2019-09-30

Supported by

National Natural Science Foundation of China (11502209)

Abstract

With the increase of design space and nonlinearity, the Surrogate-Based Optimization (SBO) process converges more slowly, and shows deficiency in local exploitation. This paper proposes an efficient adaptive global optimization method, of which infill samples are selected within a variable design space. In each refinement cycle, the current design space is divided into several subspaces by a fuzzy clustering algorithm, with respect to the inherent characteristics of samples in the current design space. Thus new infill samples are generated in each of the subspaces by maximizing expected improvement function and minimizing surrogate prediction, and the subspaces are then merged to form a new design space. The proposed method is validated by six analytical tests. In comparison with general SBO method, the proposed method shows better robustness and performance in global exploration and local exploitation, which is suitable for optimization problems with strong nonlinearity and many optima. The application by minimizing drag of RAE2822 airfoil indicates the proposed method performs well in solving engineering problems, and can maintain good efficiency, robustness and adaptability.

Cite this article

LI Chunna , ZHANG Yangkang . An efficient adaptive global optimization method suitable for aerodynamic optimization[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(5) : 623352 -623352 . DOI: 10.7527/S1000-6893.2019.23352

References

[1] MORRIS A J. Structural optimization by geometric programming[J]. International Journal of Solids & Structures, 1972, 8(7):847-864.
[2] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423.
[3] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:Review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[4] 乔建领, 韩忠华, 宋文萍,等. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5):67-80. QIAO J L, HAN Z H, SONG W P, et al. An efficient surrogate-based global optimization for low boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):67-80(in Chinese).
[5] 韩忠华,张瑜,许晨舟,等. 基于代理模型的大型民机机翼气动优化设计[J]. 航空学报, 2019, 40(1):522398. HAN Z H, ZHANG Y, XU C Z, et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522398(in Chinese).
[6] 周旺仪,白俊强,乔磊,等. 变弯翼型与增升装置多目标气动优化设计研究[J]. 西北工业大学学报, 2018, 36(1):83-90. ZHOU W Y, BAI J Q, QIAO L, et al. A study of multi-objective aerodynamic optimization design for variable camber airfoils and high lift devices[J]. Journal of Northwestern Polytechnical University, 2018, 36(1):83-90(in Chinese).
[7] LIU B, GROUT V, NIKOLAEVA A. Efficient global optimization of actuator based on a surrogate model assisted hybrid algorithm[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7):5712-5721.
[8] IULIANA E. Global optimization of benchmark aerodynamic cases using physics-based surrogate models[J]. Aerospace Science & Technology, 2017, 67:273-286.
[9] FORRESTER A I J, SÓBESTER A, KEANE A J. Engineering design via surrogate modeling:A practical guide[M]. Reston, VA:AIAA, 2008:77-106.
[10] LIU H, ONG Y S, CAI J. A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[J]. Structural and Multidisciplinary Optimization, 2018, 57(1):393-416.
[11] LI C N, BREZILLON J, GÖRTZ S. A hybrid approach for surrogate-based aerodynamic optimization with constraints[C]//2011 EUROGEN:Eccomas Thematic Conference, 2011:84-87.
[12] MACKMAN T J, ALLEN C B, GHOREYSHI M, et al. Comparison of adaptive sampling methods for generation of surrogate aerodynamic models[J]. AIAA Journal, 2013, 51(4):797-808.
[13] CHAUDHURI A, HAFTKA R T. Efficient global optimization with adaptive target setting[J]. AIAA Journal, 2014; 52(7):1573-1577.
[14] LIU H, ONG Y S, CAI J. A Survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[J]. Structural and Multidisciplinary Optimization, 2017(6):1-24.
[15] KAMINSKY A L, WANG Y, PANT K, et al. Adaptive sampling techniques for surrogate modeling to create high-dimension aerodynamic loading response surfaces[C]//2018 Applied Aerodynamics Conference. Reston:AIAA, 2018
[16] CHENG G H, WANG G G. Trust region based MPS method for global optimization of high dimensional design problems:AIAA-2012-1590[R]. Reston:AIAA, 2012.
[17] GUO X S, LONG T,WU D, et al. RBF metamodel assisted global optimization method using particle swarm evolution and fuzzy clustering for sequential sampling:AIAA-2014-2305[R]. Reston:AIAA, 2014.
[18] QIU H, XU Y J, GAO L, et al. Multi-stage design space reduction and metamodeling optimization method based on self-organizing maps and fuzzy clustering[J]. Expert Systems with Applications, 2016, 46:180-195.
[19] SHI R H, LIU L, LONG T, et al. Sequential radial basis function using support vector machine for expensive design optimization[J]. AIAA Journal, 2017, 55(1):214-227.
[20] DONG H C, SONG B W, WANG P, et al. Surrogate-based optimization with clustering-based space-exploration for expensive multimodal problems[J]. Structural and Multidisciplinary Optimization, 2018, 57(4):1553-1577.
[21] 王超,高正红,张伟,等. 自适应设计空间扩展的高效代理模型气动优化设计方法[J]. 航空学报,2018, 39(7):121745. WANG C, GAO Z H, ZHANG W, et al. Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):121745(in Chinese).
[22] LI C N, PAN Q F. Adaptive optimization methodology based on Kriging modeling and a trust region method[J]. Chinese Journal of Aeronautics, 2019, 32(2):281-295.
[23] LI C N. A surrogate-based framework with hybrid refinement strategies for aerodynamic shape optimization[D]. Cologne:Library and Information Base of German Aerospace Center, 2013:37-52.
[24] BEZDEK J C, CHRISTIAN J. Fuzzy mathematics in pattern classification[D]. New York:Cornell University, 1973:142-147.
[25] WU D, LONG T, WANG Y, et al. A sequential maximin latin hypercube sampling method and its application to aircraft design:AIAA-2015-3095[R]. Reston:AIAA, 2015.
[26] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492.
[27] LI Y, LIU L, LONG T, et al. Metamodel-based global optimization using fuzzy clustering for design space reduction[J]. Chinese Journal of Mechanical Engineering, 2013, 26(5):928-939.
[28] PALACIOS F, ECONOMON T D, ALONSO J J. Large-scale aircraft design using SU2[C]//AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
[29] QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2):398-417.
Outlines

/