Material Engineering and Mechanical Manufacturing

Atypical failure mechanism of aero-engine main shaft roller bearing

  • ZHENG Jintao ,
  • DENG Sier ,
  • ZHANG Wenhu ,
  • DANG Xiaoyong
Expand
  • 1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China;
    2. National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471003, China;
    3. Collaborative Innovation Center of Major Machine Manufacturing in Liaoning, Dalian 116024, China;
    4. Beijing Power Machinery Institute, Beijing 100074, China

Received date: 2019-08-05

  Revised date: 2019-08-31

  Online published: 2019-09-30

Supported by

Young Scientists Fund of the National Natural Science Foundation of China (51905152); Natural Science Foundation of Henan Province (162300410086); Science and Technology Planning Project of Henan Province (172102210254)

Abstract

Based on the dynamic analysis of rolling bearings, this paper presents dynamics differential equations of high-speed cylindrical roller bearing, considering the roller dynamic unbalance and the collision and friction between the roller and the rib, aiming at the atypical failure of aero-engine cylindrical roller bearing.The problem is solved by the GSTIFF (Gear stiff) integer algorithm with variable step. And the influence of the bearing condition parameters and the structural parameters on the maximum skew angle of the dynamic unbalanced roller and maximum collision force between the roller and the rib are analyzed. The results show that the maximum skew angle of the roller and the maximum collision force between the roller and the rib increase with the roller dynamic unbalance and the inner ring rotation speed, showing no obvious correlation with the radial load. The smaller axial clearance can effectively suppress the roller skew, but it will increase the impact force between the roller and the rib. And a reasonable axial clearance range makes the collision force between the roller and the rib small when the roller skew angle is not excessive. The smaller cage pocket circumferential clearance and the rib negative back angle and the larger roller ball end face radius can reduce the maximum skew angle of the roller and the maximum collision force between the roller and the rib.

Cite this article

ZHENG Jintao , DENG Sier , ZHANG Wenhu , DANG Xiaoyong . Atypical failure mechanism of aero-engine main shaft roller bearing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(5) : 423347 -423347 . DOI: 10.7527/S1000-6893.2019.23347

References

[1] 李锦标, 吴林丰. 高速滚子轴承的动力学分析[J]. 航空学报, 1992, 13(12):625-632. LI J B, WU L F. Dynamic analysis of high-speed roller bearings[J]. Acta Aeronautica et Astronautica Sinica, 1992, 13(12):625-632(in Chinese).
[2] LEBLANC A, NELIAS D, DEFAYE C. Nonlinear dynamic analysis of cylindrical roller bearing with flexible rings[J]. Journal of Sound and Vibration, 2009, 325(1-2):145-160.
[3] WANG Y S, JIN N N, ZHU H F. Analysis on dynamic characteristics of high speed cylindrical roller bearing[J]. Key Engineering Materials, 2011, 480-481:980-985.
[4] GAO W J, NELIAS D, LYU Y G, et al. Numerical investigations on drag coefficient of circular cylinder with two free ends in roller bearings[J]. Tribology International, 2018, 123:43-49.
[5] 张志华, 周彦伟, 邓四二, 等. 高速圆柱滚子轴承动力学及运动仿真[J]. 轴承, 2006(1):1-3. ZHANG Z H, ZHOU Y W, DENG S E, et al. Dynamics and motion simulation of high speed cylindrical roller bearings[J]. Bearing, 2006(1):1-3(in Chinese).
[6] 邓四二, 顾金芳, 崔永存,等. 高速圆柱滚子轴承保持架动力学特性分析[J]. 航空动力学报, 2014, 29(1):207-215. DENG S E, GU J F, CUI Y C, et al. Analysis on dynamic characteristics of cage in high-speed cylindrical bearing[J]. Journal of Aerospace Power, 2014, 29(1):207-215(in Chinese).
[7] CUI Y C, DENG S E, ZHENG W H, et al. The impact of roller dynamic unbalance of high-speed cylindrical roller bearing on the cage nonlinear dynamic characteristics[J]. Mechanism & Machine Theory, 2017, 118:65-83.
[8] CUI Y C, DENG S E, NIU R J, et al. Vibration effect analysis of roller dynamic unbalance on the cage of high-speed cylindrical roller bearing[J]. Journal of Sound and Vibration, 2018, 434:314-335.
[9] 孙雪, 邓四二, 陈国定,等. 弹性支承下的高速圆柱滚子轴承振动特性研究[J]. 振动与冲击, 2017, 36(18):20-28. SUN X, DENG S E, CHEN G D, et al. Vibration characteristics analysis of high-speed cylindrical roller bearings with elastic supports[J]. Journal of Vibration and Shock, 2017, 36(18):20-28(in Chinese).
[10] 孙雪, 邓四二, 陈国定,等. 弹性支承下圆柱滚子轴承保持架稳定性分析[J]. 航空动力学报, 2018, 33(2):487-496. SUN X, DENG S E, CHEN G D, et al. Analysis of cage's stability in a cylindrical roller bearing with elastic supp-ort[J]. Journal of Aerospace Power, 2018, 33(2):487-496(in Chinese).
[11] 崔立, 王黎钦, 郑德志,等. 航空发动机高速滚子轴承动态特性分析[J]. 航空学报, 2008, 29(2):492-498. CUI L, WANG L Q, ZHENG D Z, et al. Analysis on dynamic characteristics of aero-engine high-speed roller bearings[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2):492-498(in Chinese).
[12] 薛峥, 汪久根, RYMUZA Z,等. 圆柱滚子轴承的动力学分析[J]. 轴承, 2009(7):1-6. XUE Z, WANG J G, RYMUZA Z, et al. Dynamic analysis on cylindrical roller bearings[J]. Bearing, 2009(7):1-6(in Chinese).
[13] 韩勤锴, 李兴林, 闫国斌,等. 变载偏斜圆柱滚子轴承打滑动力学分析[J]. 机械工程学报, 2017, 53(9):58-65. HAN Q K, LI X L, YAN G B, et al. Dynamic skidding behavior of skew cylindrical roller bearings under time-variable loads[J]. Journal of Mechanical Engineering, 2017, 53(9):58-65(in Chinese).
[14] 曹伟, 王家序, 蒲伟,等. 加速工况下圆柱滚子轴承运动特性[J]. 中南大学学报(自然科学版), 2018, 49(3):583-591. CAO W, WANG J X, PU W, et al. Kinetic characteristics of cylindrical roller bearing during acceleration[J]. Journal of Central South University (Science and Technology), 2018, 49(3):583-591(in Chinese).
[15] LIU X L, BAI X R, CUI J L, et al. Thermal elastohydrodynamic lubrication analysis for tilted and skewed rollers in cylindrical roller bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2015, 230(4):428-441.
[16] ZHANG W H, DENG S E, CHENG G D, et al. Study on the impact of roller convexity excursion of high-speed cylindrical roller bearing on roller's dynamic characterist-ics[J]. Mechanism & Machine Theory, 2016, 103:21-39.
[17] PATRA P, SARAN V H, HARSHA S P, et al. Non-linear dynamic response analysis of cylindrical roller bearings due to rotational speed[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics, 2018:1-12.
[18] 赵燕, 毕明龙, 石东丹. 基于抑制滚子歪斜的高速圆柱滚子轴承设计[J]. 轴承, 2018(12):14-16. ZHAO Y, BI M L, SHI D D. Design of high speed cylindrical roller bearings based on control of roller skew[J]. Bearing, 2018(12):14-16(in Chinese).
[19] KLECKNER R J, PIRVICS J, CASTELLI V. High speed cylindrical rolling element bearing analysis "CYBEAN"-analytic formulation[J]. Journal of Lubrication Technology, 1980, 102(3):380-388.
[20] 邓四二, 贾群义, 薛进学. 滚动轴承设计原理[M]. 二版. 北京:中国标准出版社, 2014:258-260. DENG S E, JIA Q Y, XUE J X. Design theory of rolling bearings[M]. 2nd ed. Beijing:Standards Press of China, 2014:258-260(in Chinese).
[21] 杨咸启. 接触力学理论与滚动轴承设计分析[M]. 武汉:华中科技大学出版社, 2018:268-269. YANG X Q. Contact mechanics theory and design analysis of rolling bearings[M]. Wuhan:Huazhong University of Science and Technology Press, 2018:268-269(in Chinese).
Outlines

/