[1] 唐伟, 冯毅, 杨肖峰, 等. 非惯性弹道飞行器气动布局设计实践[J]. 气体物理, 2017, 2(1):1-12. TANG W, FENG Y, YANG X F, et al. Practices of aerodynamic configuration design for non-ballistic trajectory vehicles[J]. Physics of Gases, 2017, 2(1):1-12(in Chinese).
[2] 杜涛, 陈宇, 蔡巧言, 等. 高超声速飞行器先进气动布局的设计原理研究[J]. 空气动力学学报, 2015, 33(4):501-509. DU T, CHEN Y, CAI Q Y, et al. Research on aerodynamic design principle for advanced hypersonic vehicle[J]. Acta Aerodynamic Sinica, 2015, 33(4):501-509(in Chinese).
[3] PETER S, HERIBERT K. Reusable space transportation systems[M]. Berlin:Springer Science & Business, 2011:1-19.
[4] WEILAND C. Aerodynamic data of space vehicles[M]. Berlin:Springer Science & Business Media, 2014:11-58.
[5] VIVANI A, PEZZELLA G. Winged re-entry vehicles:Aerodynamic and aerothermodynamic analysis of space mission vehicles[M]. Berlin:Springer International Publishing, 2015:571-701.
[6] 方方, 周璐, 李志辉. 航天器返回地球的气动特性综述[J]. 航空学报, 2015, 36(1):24-38. FANG F, ZHOU L, LI Z H. A comprehensive analysis of aerodynamics for spacecraft re-entry Earth's atmosphere surroundings[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):24-38(in Chinese).
[7] 杨勇, 张辉, 郑宏涛. 有翼再入高超声速飞行器气动设计难点问题[J]. 航空学报, 2014, 35(1):1-8. YANG Y, ZHANG H, ZHENG H T. The difficult aerodynamic design problems of the winged hypersonic reentry vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):1-8(in Chinese).
[8] 方方, 田园, 赵攀, 等. 空间返回航天器气动外形设计与需求分析[J]. 空气动力学学报, 2018, 36(5):816-825. FANG F, TIAN Y, ZHAO P, et al. Aerodynamic shape designs and requirement analysis of re-entry spacecraft[J]. Acta Aerodynamica Sinica, 2018, 36(5):816-825(in Chinese).
[9] BALESDENT M, BEREND N, DEPINCE P, et al. A survey of multidisciplinary design optimization methods in launch vehicle design[J]. Structural and Multidisciplinary Optimization, 2012, 45(5):619-642.
[10] 李邦杰, 王明海. 滑翔式远程导弹滑翔段弹道研究[J]. 宇航学报, 2009, 30(6):2122-2126. LI B J, WANG M H. Research on glide trajectory of long range glide missile[J]. Journal of Astronautics, 2009, 30(6):2122-2126(in Chinese).
[11] 陈实. 航天飞机再入大气层三维机动飞行的最大过载和热流峰值[J]. 南京航空学院学报, 1991, 23(4):24-28. CHEN S. Maximum load factor and peak heating rate for three-dimentional reentry maneuvering flight of space shuttle[J]. Journal of Nanjing Aeronautical Institute, 1991, 23(4):24-28(in Chinese).
[12] WALBERG G D. A survey of aeroassisted orbit transfer[J]. Journal of Spacecraft and Rockets, 1985, 22(1):3-18.
[13] PAEZ C. The development of the X-37 re-entry vehicle[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA:2004.
[14] GRANTZ A C. X-37B orbital test vehicle and derivatives[C]//AIAA SPACE 2011 Conference & Exposition. Reston:AIAA,2011:27-29.
[15] GARICA F, FOWLER W T. Thermal protection system weight minimization for the space shuttle through trajectory optimization[J]. Journal of Spacecraft and Rockets, 1974, 11(4):241-245.
[16] MCGUIRE M, GAGE P, GALLOWAY E, et al. Trajectory and thermal protection system design for reusable launch vehicles[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA:2004.
[17] 傅瑜. 升力式天地往返飞行器自主制导方法研究[D]. 哈尔滨:哈尔滨工业大学, 2012:98-100. FU Y. Autonomous guidance method for lift transportation vehicle[D]. Harbin:Harbin Institute of Technology, 2012:98-100(in Chinese).
[18] MIKULA D, HOLTHAUS M, JENSEN T, et al. X-37 Flight demonstrator system safety program and challenges[C]//Space 2000 Conference and Exposition, 2000:5073.
[19] LI Z Z, XIAO T H, LV F X, et al. A rapid analysis tool for aerodynamics/aerothermodynamics of hypersonic vehicles[J]. Transactions of Nanjing University of Aeronautics and Astronautics,2017,34(4):1-8.
[20] 吕凡熹, 李正洲, 邓经枢, 等. 面向飞行器概念设计的全速域气动分析工具[J]. 空气动力学学报, 2017,35(5):1-12. LYU F X, LI Z Z, DENG J S, et al. An aerodynamic analysis tool for aircraft conceptual design[J]. Acta Aerodynamics Sinica, 2017,35(5):1-12(in Chinese).
[21] 张鲁民, 叶友达, 纪楚群. 航天飞机空气动力学分析[M]. 北京:国防工业出版社, 2009:100-113. ZHANG L M, YE Y D, JI C Q. Space shuttle aerodynamic analysis[M]. Beijing:National Defense Industry Press, 2009:100-113(in Chinese).
[22] OPPENHEIMER M, DOMAN D, NAMARA J, et al. Viscous effects for a hypersonic vehicle model[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit.Reston,VA:AIAA,2008.
[23] BONET J, PERAIRE J. An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems[J]. International Journal for Numerical Methods in Engineering, 1991, 31(1):1-17.
[24] WARE G M, CRUZ C. Aerodynamic characteristics of the HL-20[J]. Journal of Spacecraft and Rockets, 1993, 30(5):529-536.
[25] 薛铖,邓枫,余雄庆,等. 复杂外形高超声速飞行器气动加热快速预测方法研究[C]//第九届全国流体力学学术会议, 2014:1-8. XUE C, DENG F, YU X Q, et al. A rapid method for predicting convective heating on hypersonic vehicles[C]//Ninth National Academic Conference on Fluid Dynamics,2014:1-8(in Chinese).
[26] 张志成, 潘梅林, 刘初平. 高超声速气动热和热防护[M]. 北京:国防工业出版社, 2003:104-105. ZHANG Z C, PAN M L, LIU C P. Hypersonic aerothermaldynamics and thermal protection[M]. Beijing:National Defense Industry Press, 2003:104-105(in Chinese).
[27] 霍霖. 复杂外形高超声速飞行器气动热快速工程估算及热响应分析[D].长沙:国防科技大学, 2012:35-39. HUO L. The rapid engineering aero-heating calculation and thermal respond for complex shaped hypersonic vehicles[D]. Changsha:National University of Defense Technology, 2012:35-39(in Chinese).
[28] ZOBY E V, MOSS J N, STUUON K, Approximate convective-heating equations for hypersonic flows[J]. Journal of Spacecraft and Rockets, 1981, 18(1):64-70.
[29] 李素循. 典型外形高超声速流动特性[M]. 北京:国防工业出版社, 2007:104-105. LI S X. Hypersonic flow characteristics of typical shapes[M]. Beijing:National Defense Industry Press, 2007:104-105(in Chinese).
[30] OLDS J R, COWART K. A method of integrating aeroheating into conceptual reusable launch vehicle design:Evaluation of advanced thermal protection techniques for future reusable launch vehicles[R]. Washington,D.C.:NASA, 2001.
[31] 冯毅,肖光明,唐伟, 等.类X-37运载器气动布局概念设计[J].空气动力学学报,2013,31(1):94-98. FENG Y, XIAO G M, TANG W, et al. Aerodynamics configuration conceptual design for X-37 analog transporter[J].Acta Aerodynamica Sinica,2013,31(1):94-98(in Chinese).
[32] 李正洲,肖天航,高昌,等. 高速飞行器非定常气动力、动导数快速预测方法研究[C]//首届中国空气动力学大会.北京:中国空气动力学会,2018,750-753. LI Z Z, XIAO T H, GAO C, et al. Rapid prediction on unsteady aerodynamics and dynamic derivatives for high speed flight vehicles[C]//The 1st Chinese Conference of Aerodynamics. Beijing:Chinese Aerodynamics Research Society,2018:750-753(in Chinese).
[33] 张庆,叶正寅.基于动导数的类X-37B飞行器纵向稳定性分析[J].北京航空航天大学学报,2020,46(1):77-85. ZHANG Q,YE Z Y. Longitudinal stability analysis for X-37B like trans-atmospheric orbital test vehicle based on aerodynamic derivatives[J]. Journal of Beijing University of Aeronautics and Astronautics,2020,46(1):77-85(in Chinese).
[34] STEWART D A, LEISER D B. Light weight TUFROC TPS for hypersonic vehicles:AIAA-2006-7945[R].Reston,VA:AIAA, 2006.
[35] MARTIN C J, MAX L B. Parametric weight comparison of advanced metallic, ceramic tile, and ceramic blanket thermal protection systems:TM-2000-210289[R].Was-hington,D.C.:NASA,2000.
[36] LAUB B, VENKATAPATHY E. Thermal protection system technology and facility needs for demanding future planetary missions[C]//Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, 2004, 544:239-247.
[37] 解维华,韩国凯,孟松鹤,等. 返回舱/空间探测器热防护结构发展现状与趋势[J].航空学报, 2019, 40(8):022792. XIE W H, HAN G K, MENG S H, et al. Development status and trend of thermal protection system structure for return capsules and space probes[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):022792(in Chinese).
[38] 李建林. 临近空间高超声速飞行器发展研究[M]. 北京:中国宇航出版社, 2012:99-103. LI J L. Research on near-space hypersonic vehicles development[M]. Beijing:China Astronautic Publishing Ho-use, 2012:99-103(in Chinese).
[39] BRADFORD J E, OLDS J R. Thermal protection system sizing and selection for RLVs using the sentry coding[C]//42nd AIAA/ASME/ASEE Joint Propulsion Conference & Exhibit. Reston:AIAA,2006.
[40] RODRIGUEZ A C, SNAPP C G. Orbiter thermal protection system lessons learned:AIAA-2011-7308[R]. Reston:AIAA,2011.