Specical Topic of Numerical Optimization and Design of Aircraft Aerodynamic Shape

Optimization of aeroshape integrated design of winged re-entry vehicles

  • LI Zhengzhou ,
  • HE Yuanyuan ,
  • GAO Chang ,
  • ZHANG Xiaoqing ,
  • WANG Qi
Expand
  • 1. Science and Technology on Scramjet Laboratory, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2019-08-08

  Revised date: 2019-09-12

  Online published: 2019-09-23

Supported by

Foundation of Science and Technology on Scramjet Laboratory (STS/MY-ZY-2018-007)

Abstract

Aeroshape design is one of the key technologies for Winged Re-entry Vehicles (RV-W). The influence of aerodynamic parameters on re-entry flight performance is analysed, and the criteria for aerodynamic shape design of winged re-entry vehicles are discussed. Based on the design criteria, the X-37B analog is employed to optimize the flight's aerodynamic performance. The parametric geometry modeling method, along with the aerodynamic/aerothermodynamic fast prediction method, are integrated into the aeroshape optimization. The light-weight Thermal Protection System (TPS) is designed and optimized for optimal configuration. Results indicate that the aerodynamic characteristics of the optimal configuration are greatly improved compared with the initial configuration, and the TPS weight fraction (8.7%) is less than the statistical data of similar aerospace vehicles. The aeroshape integrated design optimization method for RV-W could provide reference for similar vehicle designs.

Cite this article

LI Zhengzhou , HE Yuanyuan , GAO Chang , ZHANG Xiaoqing , WANG Qi . Optimization of aeroshape integrated design of winged re-entry vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(5) : 623356 -623356 . DOI: 10.7527/S1000-6893.2019.23356

References

[1] 唐伟, 冯毅, 杨肖峰, 等. 非惯性弹道飞行器气动布局设计实践[J]. 气体物理, 2017, 2(1):1-12. TANG W, FENG Y, YANG X F, et al. Practices of aerodynamic configuration design for non-ballistic trajectory vehicles[J]. Physics of Gases, 2017, 2(1):1-12(in Chinese).
[2] 杜涛, 陈宇, 蔡巧言, 等. 高超声速飞行器先进气动布局的设计原理研究[J]. 空气动力学学报, 2015, 33(4):501-509. DU T, CHEN Y, CAI Q Y, et al. Research on aerodynamic design principle for advanced hypersonic vehicle[J]. Acta Aerodynamic Sinica, 2015, 33(4):501-509(in Chinese).
[3] PETER S, HERIBERT K. Reusable space transportation systems[M]. Berlin:Springer Science & Business, 2011:1-19.
[4] WEILAND C. Aerodynamic data of space vehicles[M]. Berlin:Springer Science & Business Media, 2014:11-58.
[5] VIVANI A, PEZZELLA G. Winged re-entry vehicles:Aerodynamic and aerothermodynamic analysis of space mission vehicles[M]. Berlin:Springer International Publishing, 2015:571-701.
[6] 方方, 周璐, 李志辉. 航天器返回地球的气动特性综述[J]. 航空学报, 2015, 36(1):24-38. FANG F, ZHOU L, LI Z H. A comprehensive analysis of aerodynamics for spacecraft re-entry Earth's atmosphere surroundings[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):24-38(in Chinese).
[7] 杨勇, 张辉, 郑宏涛. 有翼再入高超声速飞行器气动设计难点问题[J]. 航空学报, 2014, 35(1):1-8. YANG Y, ZHANG H, ZHENG H T. The difficult aerodynamic design problems of the winged hypersonic reentry vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):1-8(in Chinese).
[8] 方方, 田园, 赵攀, 等. 空间返回航天器气动外形设计与需求分析[J]. 空气动力学学报, 2018, 36(5):816-825. FANG F, TIAN Y, ZHAO P, et al. Aerodynamic shape designs and requirement analysis of re-entry spacecraft[J]. Acta Aerodynamica Sinica, 2018, 36(5):816-825(in Chinese).
[9] BALESDENT M, BEREND N, DEPINCE P, et al. A survey of multidisciplinary design optimization methods in launch vehicle design[J]. Structural and Multidisciplinary Optimization, 2012, 45(5):619-642.
[10] 李邦杰, 王明海. 滑翔式远程导弹滑翔段弹道研究[J]. 宇航学报, 2009, 30(6):2122-2126. LI B J, WANG M H. Research on glide trajectory of long range glide missile[J]. Journal of Astronautics, 2009, 30(6):2122-2126(in Chinese).
[11] 陈实. 航天飞机再入大气层三维机动飞行的最大过载和热流峰值[J]. 南京航空学院学报, 1991, 23(4):24-28. CHEN S. Maximum load factor and peak heating rate for three-dimentional reentry maneuvering flight of space shuttle[J]. Journal of Nanjing Aeronautical Institute, 1991, 23(4):24-28(in Chinese).
[12] WALBERG G D. A survey of aeroassisted orbit transfer[J]. Journal of Spacecraft and Rockets, 1985, 22(1):3-18.
[13] PAEZ C. The development of the X-37 re-entry vehicle[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA:2004.
[14] GRANTZ A C. X-37B orbital test vehicle and derivatives[C]//AIAA SPACE 2011 Conference & Exposition. Reston:AIAA,2011:27-29.
[15] GARICA F, FOWLER W T. Thermal protection system weight minimization for the space shuttle through trajectory optimization[J]. Journal of Spacecraft and Rockets, 1974, 11(4):241-245.
[16] MCGUIRE M, GAGE P, GALLOWAY E, et al. Trajectory and thermal protection system design for reusable launch vehicles[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA:2004.
[17] 傅瑜. 升力式天地往返飞行器自主制导方法研究[D]. 哈尔滨:哈尔滨工业大学, 2012:98-100. FU Y. Autonomous guidance method for lift transportation vehicle[D]. Harbin:Harbin Institute of Technology, 2012:98-100(in Chinese).
[18] MIKULA D, HOLTHAUS M, JENSEN T, et al. X-37 Flight demonstrator system safety program and challenges[C]//Space 2000 Conference and Exposition, 2000:5073.
[19] LI Z Z, XIAO T H, LV F X, et al. A rapid analysis tool for aerodynamics/aerothermodynamics of hypersonic vehicles[J]. Transactions of Nanjing University of Aeronautics and Astronautics,2017,34(4):1-8.
[20] 吕凡熹, 李正洲, 邓经枢, 等. 面向飞行器概念设计的全速域气动分析工具[J]. 空气动力学学报, 2017,35(5):1-12. LYU F X, LI Z Z, DENG J S, et al. An aerodynamic analysis tool for aircraft conceptual design[J]. Acta Aerodynamics Sinica, 2017,35(5):1-12(in Chinese).
[21] 张鲁民, 叶友达, 纪楚群. 航天飞机空气动力学分析[M]. 北京:国防工业出版社, 2009:100-113. ZHANG L M, YE Y D, JI C Q. Space shuttle aerodynamic analysis[M]. Beijing:National Defense Industry Press, 2009:100-113(in Chinese).
[22] OPPENHEIMER M, DOMAN D, NAMARA J, et al. Viscous effects for a hypersonic vehicle model[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit.Reston,VA:AIAA,2008.
[23] BONET J, PERAIRE J. An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems[J]. International Journal for Numerical Methods in Engineering, 1991, 31(1):1-17.
[24] WARE G M, CRUZ C. Aerodynamic characteristics of the HL-20[J]. Journal of Spacecraft and Rockets, 1993, 30(5):529-536.
[25] 薛铖,邓枫,余雄庆,等. 复杂外形高超声速飞行器气动加热快速预测方法研究[C]//第九届全国流体力学学术会议, 2014:1-8. XUE C, DENG F, YU X Q, et al. A rapid method for predicting convective heating on hypersonic vehicles[C]//Ninth National Academic Conference on Fluid Dynamics,2014:1-8(in Chinese).
[26] 张志成, 潘梅林, 刘初平. 高超声速气动热和热防护[M]. 北京:国防工业出版社, 2003:104-105. ZHANG Z C, PAN M L, LIU C P. Hypersonic aerothermaldynamics and thermal protection[M]. Beijing:National Defense Industry Press, 2003:104-105(in Chinese).
[27] 霍霖. 复杂外形高超声速飞行器气动热快速工程估算及热响应分析[D].长沙:国防科技大学, 2012:35-39. HUO L. The rapid engineering aero-heating calculation and thermal respond for complex shaped hypersonic vehicles[D]. Changsha:National University of Defense Technology, 2012:35-39(in Chinese).
[28] ZOBY E V, MOSS J N, STUUON K, Approximate convective-heating equations for hypersonic flows[J]. Journal of Spacecraft and Rockets, 1981, 18(1):64-70.
[29] 李素循. 典型外形高超声速流动特性[M]. 北京:国防工业出版社, 2007:104-105. LI S X. Hypersonic flow characteristics of typical shapes[M]. Beijing:National Defense Industry Press, 2007:104-105(in Chinese).
[30] OLDS J R, COWART K. A method of integrating aeroheating into conceptual reusable launch vehicle design:Evaluation of advanced thermal protection techniques for future reusable launch vehicles[R]. Washington,D.C.:NASA, 2001.
[31] 冯毅,肖光明,唐伟, 等.类X-37运载器气动布局概念设计[J].空气动力学学报,2013,31(1):94-98. FENG Y, XIAO G M, TANG W, et al. Aerodynamics configuration conceptual design for X-37 analog transporter[J].Acta Aerodynamica Sinica,2013,31(1):94-98(in Chinese).
[32] 李正洲,肖天航,高昌,等. 高速飞行器非定常气动力、动导数快速预测方法研究[C]//首届中国空气动力学大会.北京:中国空气动力学会,2018,750-753. LI Z Z, XIAO T H, GAO C, et al. Rapid prediction on unsteady aerodynamics and dynamic derivatives for high speed flight vehicles[C]//The 1st Chinese Conference of Aerodynamics. Beijing:Chinese Aerodynamics Research Society,2018:750-753(in Chinese).
[33] 张庆,叶正寅.基于动导数的类X-37B飞行器纵向稳定性分析[J].北京航空航天大学学报,2020,46(1):77-85. ZHANG Q,YE Z Y. Longitudinal stability analysis for X-37B like trans-atmospheric orbital test vehicle based on aerodynamic derivatives[J]. Journal of Beijing University of Aeronautics and Astronautics,2020,46(1):77-85(in Chinese).
[34] STEWART D A, LEISER D B. Light weight TUFROC TPS for hypersonic vehicles:AIAA-2006-7945[R].Reston,VA:AIAA, 2006.
[35] MARTIN C J, MAX L B. Parametric weight comparison of advanced metallic, ceramic tile, and ceramic blanket thermal protection systems:TM-2000-210289[R].Was-hington,D.C.:NASA,2000.
[36] LAUB B, VENKATAPATHY E. Thermal protection system technology and facility needs for demanding future planetary missions[C]//Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, 2004, 544:239-247.
[37] 解维华,韩国凯,孟松鹤,等. 返回舱/空间探测器热防护结构发展现状与趋势[J].航空学报, 2019, 40(8):022792. XIE W H, HAN G K, MENG S H, et al. Development status and trend of thermal protection system structure for return capsules and space probes[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):022792(in Chinese).
[38] 李建林. 临近空间高超声速飞行器发展研究[M]. 北京:中国宇航出版社, 2012:99-103. LI J L. Research on near-space hypersonic vehicles development[M]. Beijing:China Astronautic Publishing Ho-use, 2012:99-103(in Chinese).
[39] BRADFORD J E, OLDS J R. Thermal protection system sizing and selection for RLVs using the sentry coding[C]//42nd AIAA/ASME/ASEE Joint Propulsion Conference & Exhibit. Reston:AIAA,2006.
[40] RODRIGUEZ A C, SNAPP C G. Orbiter thermal protection system lessons learned:AIAA-2011-7308[R]. Reston:AIAA,2011.
Outlines

/