Material Engineering and Mechanical Manufacturing

Stability of 2D pressure servo valve considering cavitation effect

  • LONG Qian ,
  • RUAN Jian ,
  • LI Sheng ,
  • HE Jinfei
Expand
  • College of Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Received date: 2019-07-10

  Revised date: 2019-08-02

  Online published: 2019-09-17

Supported by

National Natural Science Foundation of China (51405443); Supported by the Project of the National Defense Science and Technology Innovation Special Zone of China (18-H863-03-ZT-003-005-03)

Abstract

To study the effect of cavitation on the stability of the spool of a two-degree-of-freedom (2D) pressure servo valve, the simulation models of the components of the 2D pressure servo valve are established by using the basic library and HCD Library of AMESim. The theoretical analysis shows that the cavitation phenomenon will reduce the effective bulk modulus of the gas-containing oil in the valve body, and the condition for the stability of the spool considering the influence of cavitation is obtained. The simulation results show that the cavitation phenomenon will lead to oscillation when the main spool reaches the stable position, which will affect the main spool's crossing frequency from 21 Hz to 6 Hz, limiting the width of the main spool. The proper increase of the damping ratio of the main spool can improve the working stability of the main spool. To solve this problem, a damping piston structure is proposed. The model analysis shows that by improving the damping ratio of the main spool, it can improve the stability of the spool without affecting the frequency response, displacement, and anti-pollution ability of the servo valve. The experimental results show that the the damping piston can reduce the output pressure fluctuation of the 2D pressure servo valve from 9% to 2%, improving the working stability of brake valve during aircraft braking.

Cite this article

LONG Qian , RUAN Jian , LI Sheng , HE Jinfei . Stability of 2D pressure servo valve considering cavitation effect[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(5) : 423281 -423281 . DOI: 10.7527/S1000-6893.2019.23281

References

[1] 訚耀保. 高端液压元件理论与实践[J]. 机械设计与研究, 2017, 33(3):198. YIN Y B. Theory and practice of high-end hydraulic components[J]. Mechanical Design and Research, 2017, 33(3):198(in Chinese).
[2] PRSIC D, FRAGASSA C, NEDIC N, et al. Describing function of the pneumatic flapper-nozzle valve[J]. Mechanical Systems and Signal Processing, 2019, 124(1):696-714.
[3] 杜方辉,马善斌,李兴勇,等. 双喷嘴-挡板电液伺服阀抗污染能力研究[J]. 液压与气动, 2018(12):108-114. DU F H, MA S B, LI X Y, et al. Study on anti-pollution ability of double nozzle-baffle electro-hydraulic servo valve[J]. Hydraulic and Pneumatic, 2018(12):108-114(in Chinese).
[4] 褚渊博,袁朝辉,李聪英. 射流管式伺服阀耐久性仿真分析[J]. 西北工业大学学报, 2015, 33(2):326-331. CHU Y B, YUAN C H, LI C Y. Durability simulation analysis of jet tube servo valve[J]. Journal of Northwest Polytechnic University,2015, 33(2):326-331(in Chinese).
[5] 褚渊博,袁朝辉,张颖. 射流管式伺服阀冲蚀磨损特性[J]. 航空学报, 2015, 36(5):1548-1555. CHU Y B, YUAN C H, ZHANG Y. Erosion and wear characteristics of jet tube servo valve[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1548-1555(in Chinese).
[6] 阮健,裴翔,李胜. 2D电液数字换向阀[J]. 机械工程学报, 2000, 36(3):86-89. RUAN J, PEI X, LI S. 2D electro-hydraulic digital directional valve[J]. Journal of Mechanical Engineering, 2000, 36(3):86-89(in Chinese).
[7] RUAN J, BURTON R, UKRAINETZ P. An investigation into the characteristics of a two dimensional "2D" flow control valve[J]. Journal of Dynamic Systems, Measurement and Control, 2002, 124(1):214-220.
[8] 刘玉龙. 压力伺服阀啸叫机理分析[D]. 杭州:浙江大学, 2017. LIU Y L. Analysis of screaming mechanism of pressure servo valve[D]. Hangzhou:Zhejiang University, 2017(in Chinese).
[9] IBATA Y, MATSUURA Y, TAKAHASHI S, et al. Development of gaseous cavitation model in hydraulic oil flow considering the effect of dynamic stimulation[J]. IOP Conference Series:Earth and Environmental Science, 2019, 240:62041.
[10] ZHANG L, LUO J, YUAN R, et al. The CFD analysis of twin flapper-nozzle valve in pure water hydraulic[J]. Procedia Engineering, 2012, 31:220-227.
[11] YANG Q, AUNG N Z, LI S. Confirmation on the effectiveness of rectangle-shaped flapper in reducing cavitation in flapper-nozzle pilot valve[J]. Energy Conversion and Management, 2015, 98:184-198.
[12] 韩笑,AUNG N Z,曹俊章,等. 伺服阀前置级流场气穴现象的仿真及试验研究[J]. 机电工程, 2014, 31(10):1239-1243. HAN X, AUNG N Z, CAO J Z, et al. Simulation and experimental study of cavitation in front stage flow field of servo valve[J]. Mechanical and Electrical Engineering, 2014, 31(10):1239-1243(in Chinese).
[13] 曹俊章. 伺服阀前置级射流流场的气穴仿真与试验研究[D]. 哈尔滨:哈尔滨工业大学, 2013. CAO J Z. Cavitation simulation and experimental study of jet flow field in front stage of servo valve[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese).
[14] 白继平,阮健. 高频电液数字转阀阀口气穴现象研究[J]. 中国机械工程, 2012, 23(1):22-28. BAI J P, RUAN J. Study on cavitation phenomenon at valve port of high frequency electro-hydraulic digital rotary valve[J]. China Machinery Engineering, 2012, 23(1):22-28(in Chinese).
[15] 胡启祥,白继平,阮健. 基于FLUENT的2D高频阀气穴现象研究[J]. 机床与液压, 2012, 40(3):40-44. HU Q X, BAI J P, RUAN J. Study on cavitation phenom-enon of 2D high frequency valve based on FLUENT[J]. Machine Tool and Hydraulic Pressure, 2012, 40(3):40-44(in Chinese).
[16] 左希庆,张守丽,刘国文,等. 波登管力反馈型2D压力伺服阀特性[J]. 中国机械工程, 2018, 29(12):1393-1398. ZUO X Q, ZHANG S L, LIU G W, et al. Characteristics of Borden tube force feedback 2D pressure servo valve[J]. China Machinery Engineering, 2018, 29(12):1393-1398(in Chinese).
[17] 左希庆,阮健,刘国文,等. 直动式机载2D电液压力伺服阀特性[J]. 航空学报, 2017, 38(11):329-339. ZUO X Q, RUAN J, LIU G W, et al. Characteristics of direct-acting airborne 2D electro-hydraulic force servo valve[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):329-339(in Chinese).
[18] 孙坚. 二维(2D)电液压力伺服阀的设计与研究[D]. 杭州:浙江工业大学, 2016. SUN J. Design and research of electro-hydraulic force servo valve[D]. Hangzhou:Zhejiang University of Technology, 2016(in Chinese).
[19] 戴猷元,余立新. 化工原理[M]. 北京:清华大学出版社, 2010. DAI Y Y, YU L X. Principle of chemical engineering[M]. Beijing:Tsinghua University Press, 2010(in Chinese).
[20] 路甬祥. 液压气动技术手册[M]. 北京:机械工业出版社, 2002. LU Y X. Manual of hydraulic pneumatic technology[M]. Beijing:Machinery Industry Press, 2002(in Chinese).
[21] 陆倩倩,阮健,李胜. 2D伺服阀矩形先导控制阀口气穴特性研究[J]. 液压与气动, 2018(4):8-14. LU Q Q, RUAN J, LI S. Research on cavitation characteristics of rectangular pilot control valve orifice of 2D servo valve[J]. Hydraulic and Pneumatic, 2018(4):8-14(in Chinese).
[22] RUAN J, BURTON R. Bulk modulus of air content oil in a hydraulic cylinder[J]. ASME 2006 International Mechanical Engineering Congress and Exposition, 2006, 1(11):259-269.
[23] ZHANG D, ZHANG X, LI H. Simulation of dynamic characteristic of reverse pressure relief valve with AMESim[C]//IOP Conference Series:Earth and Environmental Science, 2019, 242(3).
Outlines

/