Special Column of High Performance Surface Processing Technology for Componets and Parts with Complex Surface

Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy

  • ZHAO Bo ,
  • LI Pengtao ,
  • ZHANG Cunying ,
  • WANG Xiaobo
Expand
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China

Received date: 2019-07-22

  Revised date: 2019-08-01

  Online published: 2019-10-11

Supported by

National Natural Science Foundation of China (U1604255,51475148)

Abstract

In order to give full play to the advantages of ultrasonic milling titanium alloy, improve the processing effects, and enhance the surface service performance, ultrasonic vibration is applied to the tools and workpieces to find suitable vibration directions and processing parameters. The critical speed of the side edge interrupted cutting is obtained from the theoretical derivation. The effects of different amplitudes and cutting speeds on surface topography, chip morphology, cutting force, and tool wear are investigated. The relationship between the surface microtexture and the friction characteristics is studied. Tests have shown that in both vibration directions, increasing the amplitude reduces the degree of serration of the chips, and increasing the axial amplitude allows the sawtooth chips to be converted into strip-shaped chips. When ultrasonic vibration is applied in the axial direction, the surface microtexture is more easily obtained, while the cutting force is reduced, the tool wear is weakened, and the running-in time of workpiece during friction is reduced. In addition, a method of measuring the ultrasonic vibration frequency under working conditions is proposed by using the spectrum analysis of the cutting force.

Cite this article

ZHAO Bo , LI Pengtao , ZHANG Cunying , WANG Xiaobo . Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(2) : 623301 -623301 . DOI: 10.7527/S1000-6893.2019.23301

References

[1] 郭良刚, 杨合, 邸伟佳, 等. TC4钛合金薄壁带筋锥形环辗轧充填规律[J]. 航空学报, 2015, 36(8):2798-2806. GUO L G, YANG H, DI W J, et al. Filling rules in thin-walled and ribbed conical ring rolling for TC4 titanium alloy[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2798-2806(in Chinese).
[2] 童景琳, 封志彬, 焦锋, 等. 超声纵-扭复合铣削钛合金刀具磨损特性研究[J]. 表面技术, 2019, 48(3):297-303. TONG J L, FENG Z B, JIAO F, et al. Tool wear in longitudinal-torsional ultrasonic vibration milling of titanium alloys[J]. Surface Technology, 2019, 48(3):297-303(in Chinese).
[3] BAI W, SUN R L, LEOPOLD J, et al. Microstructural evolution of Ti6Al4V in ultrasonically assisted cutting:Numerical modelling and experimental analysis[J]. Ultrasonics, 2017, 78:70-82.
[4] ADMAN A S, SUBBIAH S. Experimental investigation of transverse vibration-assisted orthogonal cutting of Al-2024[J]. International Journal of Machine Tools and Manufacture, 2010, 50(3):294-302.
[5] CHEN J B, XU M H, XIE C, et al. A nonuniform moving heat source model for temperature simulation in ultrasonic-assisted cutting of titanium alloys[J]. International Journal of Advanced Manufactured Technology, 2018, 97(5-8):3009-3021.
[6] BREWER W D, BIRD R K, WALLACE T A. Titanium alloys and processing for high speed aircraft[J]. Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing, 1998, 243(1):299-304.
[7] 童景琳, 卫官. 超声椭圆振动切削钛合金切削力特性研究[J]. 振动与冲击, 2019, 38(9):208-215. TONG J L, WEI G. Characteristics of cutting force during titanium alloy processed with UEVC[J]. Journal of Vibration and Shock, 2019, 38(9):208-215(in Chinese).
[8] 刘宪福, 张建华, 陶国灿, 等. 超声振动辅助铣削加工预测建模与实验验证[J]. 电加工与模具, 2018(5):57-60. LIU X F, ZHANG J H, TAO G C, et al. Predictive modeling and experimental verification of ultrasonic vibration assisted milling[J]. Electromachining & Mould, 2018(5):57-60(in Chinese).
[9] 张承龙, 冯平法, 张建富. 光学玻璃旋转超声端面铣削表面特性[J]. 清华大学学报(自然科学版), 2012, 52(11):1616-1621. ZHANG C L, FENG P F, ZHANG J F. Surface properties of optical glass processed with rotary ultrasonic face milling[J]. Journal of Tsinghua University (Science and Technology), 2012, 52(11):1616-1621(in Chinese).
[10] ZANG J, ZHAO J, LI A, et al. Serrated chip formation mechanism analysis for machining of titanium alloy Ti-6Al-4V based on thermal property[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(1-4):119-127.
[11] XU X,ZHANG J, LIU H G, et al. Effect of morphological evolution of serrated chips on surface formation during high speed cutting Ti6Al4V[J]. Procedia CIRP, 2018, 77:147-150.
[12] IBRAHIM M R, RAFAI N H, KAMARUDDIN S A, et al. An investigation of cutting mechanics in 2 dimensional ultrasonic vibration assisted milling toward chip thickness and chip formation[J]. IOP Conference Series:Materials Science and Engineering, 2015, 100(1):012057.
[13] 刘佳佳, 姜兴刚, 张德远. 钛合金高速旋转超声椭圆振动侧铣削切屑特征和刀具磨损研究[J]. 机械工程学报,2019,55(19):186-194. LIU J J, JIANG X G, ZHANG D Y. Research on the characteristics of chips and tool flank wear in high-speed rotary ultrasonic elliptical machining for side milling of Ti-6Al-4V[J]. Journal of Mechanical Engineering,2019,55(19):186-194. (in Chinese).
[14] 倪陈兵, 朱立达, 宁晋生, 等. 超声振动辅助铣削钛合金铣削力信号及切屑特征研究[J]. 机械工程学报, 2019, 55(7):207-216. NI C B, ZHU L D, NING J S, et al. Research on the characteristics of cutting force signal and chip in ultrasonic vibration-assisted milling of Titanium alloy[J]. Journal of Mechanical Engineering, 2019, 55(7):207-216(in Chinese).
[15] SUTTER G, LIST G. Very high speed cutting of Ti-6Al-4V titanium alloy change in morphology and mechanism of chip formation[J]. International Journal of Machine Tools and Manufacture, 2013, 66:37-43.
[16] ROTELLA G, UMBRELLO D. Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1):69-72.
[17] TURELY D M, DOYLE E D, RAMALINGAM S. Calculation of shear strains in chip formation in titanium[J]. Materials Science & Engineering, 1982, 55(1):45-48.
[18] 王升平. TC4钛合金锯齿形切屑绝热剪切带的微观组织和显微硬度变化[J]. 中国机械工程, 2012, 23(9):1117-1121. WANG S P. Investigation on microstructure and microhardness of adiabatic shear band of saw-tooth chip in machining TC4 alloy[J]. China Mechanical Engineering, 2012, 23(9):1117-1121(in Chinese).
[19] WANG F, LIU Y H, ZHANG Y Z, et al. Compound machining of titanium alloy by super high speed EDM milling and arc machining[J]. Journal of Materials Processing Technology, 2014, 214(3):531-538.
[20] 臧健. Ti6Al4V钛合金多工步切削加工切屑形成机理研究[D]. 济南:山东大学, 2018:16-20. ZANG J. Chip formation mechanism in multi-step machining of Ti6Al4V titaniun[J]. Jinan:Shandong University, 2018:16-20(in Chinese).
[21] 马晨波, 朱华, 历建全. 摩擦副不同表面织构化的润滑减摩性能试验研究[J]. 中国矿业大学学报, 2010, 39(2):244-248. MA C B, ZHU H, LI J Q. Experimental study of tribological properties of texture on different surfaces of frictional Pairs[J]. Journal of China University of Mining & Technology, 2010, 39(2):244-248(in Chinese).
[22] 韩中领, 汪家道, 陈大融. 凹坑表面形貌在面接触润滑状态下的减阻研究[J]. 摩擦学学报, 2009, 29(1):10-16. HAN Z L, WANG J D, CHEN D R. Drag reduction by dimples on surfaces in plane-plane contact lubrication[J]. Tribology, 2009, 29(1):10-16(in Chinese).
[23] 王丽丽, 郭少辉, 魏聿梁, 等. 表面微织构对45#钢摩擦副表面摩擦学性能影响的实验研究[J]. 表面技术, 2018, 47(12):149-154. WANG L L, GUO S H, WEI Y L, et al. Experimental study on the influence of surface microtexture on the tribological properties of 45#steel friction pairs[J]. Surface Technology, 2018, 47(12):149-154(in Chinese).
[24] 李万钟, 徐颖强, 孙戬, 等. 纹理表面滑动摩擦稳态摩擦学性能[J]. 中国机械工程, 2018, 29(10):1141-1146. LI W Z, XU Y Q, SUN J, et al. Steady-state tribological performance of sliding friction on textured surface[J]. China Mechanical Engineering, 2018, 29(10):1141-1146(in Chinese).
[25] 李凯, 付鹏飞, 唐代斌, 等. TC4钛合金电子束表面造型形貌及近表面组织特征[J]. 航空学报, 2017, 38(12):329-336. LI K, FU P F, TANG D B, et al. Topography and near-surface microstructure of TC4 alloy treated by electron beam surfi-sculpt TM[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):329-336(in Chinese).
[26] 纪华伟, 虞文泽, 胡小平. 力负载对超声切割声学系统谐振频率及谐振阻抗的影响[J]. 振动与冲击, 2016, 35(23):136-141. JI H W, YU W Z, HU X P. Influence of load on resonance frequency and resonance impedance of an ultrasonic cutting acoustic system[J]. Journal of Vibration and shock, 2016, 35(23):136-141(in Chinese).
Outlines

/