The remote field eddy current testing technique features a deep depth of detection, high reliability of detection results, and many other advantages, which make it suitable for rapid detection of multi-layer metal riveting components. Aiming at the in-situ detection of hidden cracks along the rivet holes of aircraft riveting, the finite element model for the remote field eddy current detection of the hidden crack plane of multi-layer metal riveting members is established. The inner diameter of exciting coli, magnetic circuit structure, and shielding damping are simulated and optimized. The exciting coil and the detecting coil are combined with the shielding structure. The characteristics of hidden crack signals along the rivet holes of multi-layer metal riveting members are studied. The simulation and experimental results show that the tank shape of the magnetic core is 1.85 times that of the cylindrical of the magnetic core. The shield of the aluminum cover + copper cover can advance the remote field by 10 mm. When the detection coil is directly above the defect, the detected amplitude of the signal value and phase reach the maximum values. And the maximum value decreases with the increase of the buried depth of the defect. The research results are expected to be used to guide the engineering inspection practice of the multi-layer metal riveted components of the aircraft.
ZHAO Benyong
,
SONG Kai
,
NING Ning
,
HUANG Huabin
,
ZHANG Lipan
. Optimization and experimentation of remote field eddy current testing probe for hidden defects of aircraft riveting parts[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020
, 41(1)
: 423111
-423111
.
DOI: 10.7527/S1000-6893.2019.23111
[1] 王黎明, 冯潼能. 数字化自动钻铆技术在飞机制造中的应用[J]. 航空制造技术, 2008(11):32-35. WANG L M, FENG T N. Application of digital automatic drill-riveting technology in aircraft manufacture[J]. Aeronautical Manufacturing Technology, 2008(11):32-35(in Chinese).
[2] 杜洪增. 飞机结构疲劳强度与断裂分析[M]. 北京:中国民航出版社, 1996. DU H Z. Fatigue strength and fracture analysis of aircraft structure[M]. Beijing:China Civil Aviation Press, 1996(in Chinese).
[3] 田冬风. 飞机机身铆接构件疲劳性能研究[D]. 南京:南京航空航天大学, 2013. TIAN D F. Research on fatigue property of riveted component for aircraft fuselage[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
[4] 张阿龙. 大型飞机机身环形对接区高效精确制孔技术[D]. 杭州:浙江大学, 2016. ZHANG A L. Efficient and accurate drilling technology for fuselage circumferential splice of large aircraft[D]. Hangzhou:Zhejiang University, 2016(in Chinese).
[5] 杨宾峰, 罗飞路, 张玉华,等. 脉冲涡流在飞机铆接结构无损检测中的应用研究[J]. 计量技术, 2005(12):15-17. YANG B F, LUO F L, ZHANG Y H, et al. Application research of pulse eddy current in nondestructive testing of aircraft riveted structure[J]. Metrology Technology, 2005(12):15-17(in Chinese).
[6] 耿荣生, 景鹏. 声发射技术在全尺寸飞机疲劳试验中的应用[J]. 应用声学, 2013, 32(4):14-19. GENG R S, JING P. Application of acoustic emission technique to full scale aircraft fatigue tests[J]. Applied Acoustics, 2013,32(4):14-19(in Chinese).
[7] 康建中, 吴瑞光, 杜振宴, 等. 飞机进气道铆钉脱落打坏发动机原因分析及控制措施[J]. 航空维修与工程, 2015(8):89-91. KANG J Z, WU R G, DU Z Y, et al. Cause analysis on rivet falling off and breaking the engine in aircraft inlet[J]. Aviation Maintenance & Engineering, 2015(8):89-91(in Chinese).
[8] 彭智伟, 姜跃进, 王竹林. 螺接结构孔边裂纹的超声原位检测[J]. 无损检测, 2016, 38(10):67-71. PENG Z W, JIANG Y J, WANG Z L. In-situ ultrasonic inspection for cracks around holes of bolted joints[J]. Nondestructive Testing, 2016, 38(10):67-71(in Chinese).
[9] 田云飞, 曹宗杰. 红外检测在老龄飞机蒙皮搭接结构腐蚀检测中的应用分析[J]. 飞机设计, 2013(3):31-35. TIAN Y F, CAO Z J. The Analysis of aging aircraft skin lap joint structure based on infrared NDI[J]. Aircraft Design, 2013(3):31-35(in Chinese).
[10] 徐矛, 黄华斌, 王竹林. 疲劳试验中飞机蒙皮裂纹的检测方法研究[J]. 结构强度研究, 2014(2):53-56. XU M, HUANG H B, WANG Z L. Research on detection method of aircraft skin crack in fatigue testing[J]. Structural Strength Study, 2014(2):53-56(in Chinese).
[11] SCHMIDT T R. History of the remote-field eddy current inspection technique[J]. Materials Evaluation, 1989, 47(1):14-22.
[12] KOBAYASHI N, UENO S, NAGAI S, et al. Remote field eddy current testing for steam generator inspection of fast reactor[J]. Nuclear Engineering and Design, 2011, 241(12):4643-4648.
[13] 曲民兴, 周连文.导电平板的远场涡流现象[J].无损检测, 1997, 19(8):216-219. QU M X, ZHOU L W. Remote field eddy current phenomenon in metallic plates[J]. Nondestructive Testing, 1997, 19(8):216-219(in Chinese).
[14] 周连文, 曲民兴. 导电平板中的远场涡流特性[J]. 南京航空航天大学学报, 1998, 30(2):146-152. ZHOU L W, QU M X. Characteristic of remote field eddy current in metallic plates[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1998, 30(2):146-152(in Chinese).
[15] KASAI N, FUJIWARA Y, SEKINE K, et al. Evaluation of back-side flaws of the bottom plates of an oil-storage tank by the RFECT[J]. NDT & E International, 2008, 41(7):525-529.
[16] KASAI N, MATSUZAKI S, SAKAMOTO T. Experimental and analytical study for detectability of the back-side flaws of flat erromagnetic plates by RFECT[J]. NDT & E International, 2011, 44(8):703-707.
[17] 胥俊敏, 杨宾峰, 王晓锋, 等. 铆接结构缺陷检测中远场涡流传感器的优化设计[J]. 机械工程学报, 2017, 53(14):120-127. XU J M, YANG B F, WANG X F, et al. Optimal design of remote field eddy current sensor for detection of cracks in riveted structure[J]. Journal of Mechanical Engineering, 2017, 53(14):120-127(in Chinese).
[18] 杨宾峰, 胥俊敏, 王晓锋, 等. 飞机铆接结构缺陷的远场涡流检测技术研究[J]. 传感技术学报, 2017, 30(10):1493-1496. YANG B F, XU J M, WANG X F, et al. Research on remote field eddy current technique applied to inspect riveted structure[J]. Chinese Journal of Sensors and Actuators, 2017, 30(10):1493-1496(in Chinese).
[19] YANG B F, XU J M, WU H, et al. Magnetic field shielding technique for pulsed remote field eddy current inspection of planar conductors[J]. NDT & E International, 2017, 90:48-54.
[20] SUN Y S, DENNIS R, HARRY Z. New advances in detecting cracks in raised-head fasteners holes using rotational remote field eddy current technique[C]//2005 ASNT Fall Conference, 2005.
[21] SUN Y S, OUYANG T H, XU J, et al. Crack detection in aircraft fastener holes using flat geometry remote field eddy current technique and super sensitive eddy current system[C]//40th COSPAR Scientific Assembly, 2006:542-553.
[22] SUN Y S, WAN W, YANG X, et al. Applications of motorized rotational RFEC probes in thick and multilayer structure rack detection[J]. American Institute of Physic, 2008, 975(1):336-343.