[1] SONG J M, ZHANG T Q. Passive homing missile's variable structure proportional navigation with terminal angular constraint[J]. Chinese Journal of Aeronautics, 2001, 14(2):83-87.
[2] KUMAR S R, RAO S, GHOSE D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints[J]. Journal of Guidance, Control and Dynamics, 2012, 35(4):1230-1246.
[3] ZHOU D, SUN S, TEO K L. Guidance law with finite time convergence[J]. Journal of Guidance, Control and Dynamics, 2009, 32(6):1838-1846.
[4] ZHANG Y X, SUN M W, CHEN Z Q. Finite-time convergent guidance law with impact angle constraint based on sliding-mode control[J]. Nonlinear Dynamic, 2012, 70(1):619-625.
[5] YU X H, MAN Z H. Fast terminal sliding-mode control design for nonlinear dynamical systems[J]. IEEE Transactions on Circuits and Systems:Fundamental Theory and Applications, 2002, 49(2):261-264.
[6] SONG J, SONG S, GUO Y, et al. Nonlinear disturbance observer based fast terminal sliding mode guidance with impact angle constraints[J]. International Journal of Innovative Computing, Information and Control, 2015, 11(3):787-802.
[7] ZONG Q, ZHAO Z S, ZHANG J. Higher order sliding mode control with self-tuning law based on integral sliding mode[J]. IET Control Theory and Application, 2008, 4(7):1282-1289.
[8] SONG J H, SONG S M. Three-dimensional guidance law based on adaptive integral sliding mode control[J]. Chinese Journal of Aeronautics, 2016, 29(1):202-214.
[9] FENG Y, YU X H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12):2159-2167.
[10] SONG J H, SONG S M, ZHOU H B. Adaptive nonsingular fast terminal sliding mode guidance law with impact angle constraints[J]. International Journal of Control, Automation and Systems, 2016, 14(1):99-114.
[11] ZHANG X J, LIU M Y, LI Y. Nonsingular terminal sliding-mode-based guidance law design with impact angle constraints[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2019, 43(1):47-54.
[12] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2012, 57(8):2106-2110.
[13] LI H, CAI Y. On SFTSM control with fixed-time convergence[J]. IET Control Theory & Applications, 2017, 11(6):766-773.
[14] ZHANG L, WEI C Z, WU R, et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82-83:70-79.
[15] 熊少锋, 王卫红, 王森. 带攻击角度约束的非奇异快速终端滑模制导律[J]. 控制理论与应用, 2014, 31(3):269-278. XIONG S F, WANG W H, WANG S. Nonsingular fast terminal sliding-mode guidance with intercept angle constraint[J]. Control Theory & Applications, 2014, 31(3):269-278(in Chinese).
[16] HE S M, LIN D F, WANG J. Continuous second-order sliding mode based impact angle guidance law[J]. Aerospace Science and Technology, 2015, 41:199-208.
[17] ZHANG N, GAI W D, ZHONG M Y, et al. A fast finite-time convergent guidance law with nonlinear disturbance observer for unmanned aerial vehicles collision avoidance[J]. Aerospace Science and Technology, 2019, 86:204-214.
[18] ZHANG H, HAN J, LUO C, et al. Fault-tolerant control of a nonlinear system based on generalized fuzzy hyperbolic model and adaptive disturbance observer[J]. IEEE Transactions on Systems Man Cybernetics-Systems, 2017, 47(8):2289-2300.
[19] YANG Z J. Robust control of nonlinear semi-strict feedback systems using finite-time disturbance observers[J]. International Journal of Robust and Nonlinear Control, 2017, 27(17):3582-3603.
[20] GONZALEZ A, BALAGUER V, GARCIA P, et al. Gain-scheduled predictive extended state observer for time-varying delays systems with mismatched disturbance[J]. ISA Transactions, 2019, 84:206-213.
[21] 熊少锋, 王卫红, 刘晓东, 等. 考虑导弹自动驾驶仪动态特性的带攻击角度约束制导律[J]. 控制与决策, 2015, 30(4):585-592. XIONG S F, WANG W H, LIU X D, et al. Impact angle guidance law considering missile's dynamics of autopilot[J]. Control and Decision, 2015, 30(4):585-592(in Chinese).
[22] SUN S, ZHOU D, HOU W T. A guidance law with finite time convergence accounting for autopilot lag[J]. Aerospace Science and Technology, 2013, 25(1):132-137.
[23] ZHOU D, QU P P, SUN S. A guidance law with terminal impact angle constraint accounting for missile autopilot[J]. Journal of Dynamic Systems, Measurement, and Control, 2013, 135(5):051009.
[24] QU P P, ZHOU D. A dimension reduction observer-based guidance law accounting for dynamics of missile autopilot[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(7):1114-1121.
[25] HE S M, LIN D F, WANG J. Robust terminal angle constraint guidance law with autopilot lag for intercepting maneuvering targets[J]. Nonlinear Dynamics, 2015, 81(1-2):881-892.
[26] MEHDI G, IMAN M, AHMAD R V. Finite-time convergent guidance law based on integral backstepping control[J]. Aerospace Science and Technology, 2014, 39:370-376.
[27] ZHOU A M, Finite-time output feedback attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Control Systems Technology, 2014, 22(1):338-345.
[28] LI B, HU Q L, YU Y B, et al. Observer-based fault-tolerant attitude control for rigid spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5):2572-2582.
[29] NI J K, LIU L, LIU C X, et al. Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system[J]. Nonlinear Dynamics, 2016, 86(1):401-420.
[30] WANG X, GUO J, TANG S J, et al. Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle[J]. ISA Transactions, 2019, 88:233-245.
[31] JIANG B Y. HU Q L, FRISWELL M I. Fixed-time attitude control for rigid spacecraft with actuator saturation and faults[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5):1892-1898.
[32] BASIN M, PANATHULA C B, SHTESSEL Y. Multivariable continuous fixed-time second-order sliding mode control:design and convergence time estimation[J]. IET Control Theory & Applications, 2017, 11(8):1104-1111.
[33] HALL C E, SHTESSEL Y B. Sliding mode disturbance observer-based control for a reusable launch vehicle[J]. Journal of Guidance, Control and Dynamics, 2006, 29(6):1315-1328.
[34] SHTESSEL Y, EDWARDS C, FRIDMAN L, et al. Sliding mode control and observation[M]. New York:Springer, 2014:155-158.
[35] UTKIN V. On convergence time and disturbance rejection of super-twisting control[J]. IEEE Transactions on Automatic Control, 2013, 58(8):2013-2017.
[36] SWAROOP D, HEDRICK J K, YIP P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10):1893-1899.