Material Engineering and Mechanical Manufacturing

Method for establishing machining and inspection model of multi-stage machining processes of thin-walled blades

  • LIN Xiaojun ,
  • CUI Tong ,
  • YANG Biying ,
  • YANG Rui ,
  • XIN Xiaopeng
Expand
  • 1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Institute of Mechanical Manufacturing Technology, China Academy of Engineering Physics, Mianyang 221116, China

Received date: 2019-03-27

  Revised date: 2019-04-24

  Online published: 2019-10-11

Supported by

National Natural Science Foundation of China (51675439)

Abstract

In order to improve the machining quality of blade, reduce the scrap rate of finished blade and the machining cost. In this paper, the typical machining processes of aero-engine thin-walled blades, such as CNC milling, polishing, vibration polishing and shot peening, are taken as research objects. An error compensation method for a Multi-stage machining deformation and the method of establishing the machining model and inspection model are proposed. The theoretical model required by the drawing is only used as the final inspection model, and according to the accumulation of subsequent processing errors, the process inspection model is modified by the final inspection model. Through the example verification, the method proposed in this paper can effectively reduce the false positive rate of the blade process inspection and ensure the qualified process inspection and final inspection.

Cite this article

LIN Xiaojun , CUI Tong , YANG Biying , YANG Rui , XIN Xiaopeng . Method for establishing machining and inspection model of multi-stage machining processes of thin-walled blades[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(11) : 423034 -423034 . DOI: 10.7527/S1000-6893.2019.23034

References

[1] 蔺小军, 刘维维, 任军学, 等. 薄壁叶片加工变形误差补偿技术[J]. 航空制造技术, 2010(14):54-56. LIN X J, LIU W W, REN J X, et al. Deformation error compensation of manufacturing thin-wall blade[J]. Aeronautical Manufacturing Technology, 2010(14):54-56(in Chinese).
[2] JIANG R S, ZHANG D H, BU K, et al. A deformation compensation method for wax pattern die of turbine blade[J]. International Journal of Advanced Manufacturing Technology, 2016, 88(9-12):1-9.
[3] WANG M H, SUN Y. Error prediction and compensation based on interference-free tool paths in blade milling[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(5-8):1309-1318.
[4] ALTINTAS Y, TUYSUZ O, HABIBI M, et al. Virtual compensation of deflection errors in ball end milling of flexible blades[J]. CIRP Annals, 2018, 67(1):365-368.
[5] RATCHEV S, LIU S, BECKER A. Error compensation strategy in milling flexible thin-wall parts[J]. Journal of Materials Processing Technology, 2005, 162(10):673-681.
[6] RATCHEV S, LIU S, HUANG, et al. An advanced FEA based force induced error compensation strategy in milling[J]. International Journal of Machine Tools & Manufacture, 2006, 46(5):542-551.
[7] WANG G, LI W L, TONG G, et al. Improving the machining accuracy of thin-walled parts by online measuring and allowance compensation[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(5-8):2755-2763.
[8] WANG G, LI W-L, RAO F H, et al. Multi-parameter optimization of machining impeller surface based on the on-machine measuring technique[J/OL]. Chinese Journal of Aeronautics, (2018-10-23)[2019-04-20]. https://doi.org/10.1016/j.cja.2018.09.005
[9] 单晨伟, 赵颖, 刘维伟, 等. 一种薄壁悬臂叶片数控加工非均匀余量刚度补偿方法[J]. 航空学报, 2013, 34(3):686-693. SHAN C W, ZHAO Y, LIU W W, et al. A nonuniform off-set surface rigidity compensation strategy in numerical controlled machining of thin-walled cantilever blades[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):686-693(in Chinese).
[10] CHO M W, KIM G H, SEO T I, et al. Integrated machining error compensation method using OMM data and modified PNN algorithm[J]. International Journal of Machine Tools & Manufacture, 2006, 46(12):1417-1427.
[11] 万敏, 张卫红. 铣削过程中误差预测与补偿技术研究进展[J]. 航空学报, 2008, 29(5):1340-1349. WAN M, ZHANG W H, Overviews of technique research progress of form error prediction and error compensation in milling process[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5):1340-1349(in Chinese).
[12] CHEN W, XUE J, TANG D, et al. Deformation prediction and error compensation in multilayer milling processes for thin-walled parts[J]. International Journal of Machine Tools & Manufacture, 2009, 49(11):859-864.
[13] CHEN H X, LI H, FENG H T, et al. Aero-engine blade deformation control of milling process[J]. Advanced Materials Research, 2011, 308-310:1198-2004.
[14] 蔺小军, 单晨伟, 王增强, 等. 航空发动机叶片型面三坐标测量机测量技术[J]. 计算机集成制造系统, 2012, 18(1):125-131. LIN X J, SHAN C W, WANG Z Q, et al. Measurement techniques of coordinate measuring machine for blade surface of aero-engine[J]. Computer Integrated Manufacturing Systems, 2012, 18(1):125-131(in Chinese).
[15] 蔺小军, 郭研, 吴广, 等. 等高法叶片型面CMM测量数据处理算法研究[J]. 仪器仪表学报, 2013, 34(11):2442-2450. LIN X J, GUO Y, WU G, et al. CMM measuring data processing algorithms for blades about the contour measurement[J]. Chinese Journal of Scientific Instrument, 2013, 34(11):2442-2450(in Chinese).
[16] 郑似玉, 滕金芳, 羌晓青. 叶片加工超差对高压压气机性能影响和敏感性分析[J]. 机械工程学报, 2018, 54(2):216-224. ZHENG S Y, TENG J F, QIANG X Q. Sensitivity analysis of manufacturing variability on high-pressure compressor performance[J]. Journal of Mechanical Engineering, 2018, 54(2):216-224(in Chinese).
[17] YING Z, ZHANG D H, WU B H. An adaptive approach to error compensation by on-machine measurement for precision machining of thin-walled blade[C]//Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics. Piscataway, NI:IEEE Press, 2015:1356-1360.
[18] KANG Y S, HASHIMOTO F, JOHNSON S P, et al. Discrete element modeling of 3D media motion in vibratory finishing process[J]. CIRP Annals-Manufacturing Technology, 2017, 66(1):313-316.
[19] 叶忠宇, 高晓斐, 李婷婷, 等. 航空发动机整体叶盘叶片预变形控制研究[J]. 航空制造技术, 2018, 61(15):96-102. YE Z Y, GAO X F, LI T T, et al. Pre-deformed control technology for high-pressure compressor of blisk blade[J]. Aeronautical Manufacturing Technology, 2018, 61(15):96-102(in Chinese).
[20] 李勋, 于建华, 赵鹏. 航空发动机叶片加工变形控制技术研究现状[J]. 航空制造技术, 2016, 59(21):41-49. LI X, YU J H, ZHAO P. Research status of machining deformation control method and technology of aeroengine blade[J]. Aeronautical Manufacturing Technology, 2016, 59(21):41-49(in Chinese).
[21] YANG J N, BAI R X, DONG L Q, et al. Turbine blade CNC machining simulation analysis based on MATLAB and UG[J]. Advanced Materials Research, 2014, 1061-1062:837-840.
[22] 陈蔚芳, 楼佩煌, 陈华. 薄壁件加工变形主动补偿方法[J]. 航空学报, 2009, 30(3):570-576. CHEN W F, LOU P H, CHEN H. Active compensation methods of machining deformation of thin-walled parts[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3):570-576(in Chinese).
Outlines

/