Fluid Mechanics and Flight Mechanics

Predictive active disturbance rejection control for flow field in 2.4 m transonic wind tunnel

  • LIU Weijie ,
  • HE Fan ,
  • LING Zhongwei
Expand
  • High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2019-05-14

  Revised date: 2019-06-06

  Online published: 2019-08-05

Abstract

The total pressure and Mach number control in the 2.4 m transonic wind tunnel are characterized by strong coupling, time delay, perturbation of system parameters and uncertainty of external disturbances. In order to solve these problems, a predictive Active Disturbance Rejection Control (ADRC) is designed. According to the principle of ADRC, the coupling between the total pressure and Mach number, the modeling errors and the parameter perturbation of the flow field, and the external disturbance can be regarded as total disturbance. Then the total disturbance is estimated by the Extended State Observer (ESO) and compensated by feed-forward control. The decoupling control of total pressure and Mach number is realized and the anti-interference ability of flow field is improved. At the same time, the Smith predictor is used to get the system delay-less output and feed it back to the extended state observer to speed up its convergence speed, so as to improve the performance of the control system. The simulation results show that the controller can realize the decoupling control well with good dynamic characteristics, anti-interference ability, and robustness.

Cite this article

LIU Weijie , HE Fan , LING Zhongwei . Predictive active disturbance rejection control for flow field in 2.4 m transonic wind tunnel[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(11) : 123154 -123154 . DOI: 10.7527/S1000-6893.2019.23154

References

[1] WANG X, YUAN P, MAO Z. The modified feature subsets ensemble applied for the Mach number prediction in wind tunnel[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2):863-874.
[2] 张文博. 2.4米跨声速风洞稳定段总压与实验段马赫数建模与控制的研究[D]. 沈阳:东北大学, 2000:40-42. ZHANG W B. Modeling and control of total pressure in setting chamber and Mach number in test section of 2.4 m transonic wind tunnel[D]. Shenyang:Northeastern University, 2000:40-42(in Chinese).
[3] ZHANG J, YUAN P, CHIN K S. Model predictive control for the flow field in an intermittent transonic wind tunnel[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1):324-338.
[4] ZHANG G, CHAI T, SHAO C. A synthetic approach for control of intermittent wind tunnel[C]//1997 American Control Conference, 1997:203-207.
[5] HWANG D S, HSU P L. A robust controller design for supersonic intermittent blow down type wind tunnels[J]. The Aeronautical Journal, 1998, 102(1013):161-169.
[6] 谢春利, 李平. 多变量系统预测函数解耦控制[J]. 系统工程与电子技术, 2003, 25(5):584-587. XIE C L, LI P. Predictive function decoupling control for MIMO system[J]. System Engineering and Electronics, 2003, 25(5):584-587(in Chinese).
[7] 李生权, 季宏丽, 襄进浩. 基于输出预估自抗扰策略的加筋壁板结构多模态振动主动控制[J]. 振动工程学报, 2012, 25(1):18-23. LI S Q, JI H L, XIANG J H. Multi-mode vibration suppression of a stiffened panel using active disturbance rejection controller based on output predictor[J]. Journal of Vibration Engineering, 2012, 25(1):18-23(in Chinese).
[8] 凡国龙, 张录健, 解旭东. 高精度雷达天线自抗扰控制技术研究[J]. 无线电通信技术, 2017,43(3):63-67. FAN G L, ZHANG L J, XIE X D. Research on ADRC of high precision radar antenna[J]. Radio Communication Technology, 2017, 43(3):63-67(in Chinese).
[9] ZHENG Q L, GAO Z Q. Predictive active disturbance rejection control for processes with time delay[J]. ISA Transactions, 2014, 53(4):873-881.
[10] 易凡. 2.4米跨声速风洞集散控制系统研究[D]. 沈阳:东北大学, 1999:45-46. YI F. Research on distributed control system of 2.4 m transonic wind tunnel[D]. Shenyang:Northeastern University, 1999:45-46(in Chinese).
[11] 王凌, 李文峰, 郑大钟. 非最小相位系统控制器的优化设计[J]. 自动化学报, 2003, 29(1):136-141. WANG L, LI W F, ZHENG D Z. Optimal design of controllers for no-minimum phase systems[J]. Acta Automatica Sinia, 2003, 29(1):136-141(in Chinese).
[12] 韩京清.自抗扰控制技术[J].前沿科学,2007(1):24-31. HAN J Q. Auto disturbance rejection control technique[J]. Frontier Science, 2007(1):24-31(in Chinese).
[13] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
[14] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//2006 American Control Conference, 2006:4989-4996.
[15] MIKLOSOVIC R, RADKE A, GAO Z Q. Discrete implementation and generalization of the extended state observer[C]//2006 American Control Conference, 2006:2209-2214.
[16] ZHAO S, GAO Z Q. Active disturbance rejection control for non-minimum phase systems[C]//29th Chinese Control Conference, 2010:6066-6070.
[17] 薛洪武, 吴爱国, 董娜. 制冷系统自抗扰解耦控制[J]. 西安交通大学学报, 2016, 50(9):85-90. XUE H W, WU A G, DONG N. Active disturbance rejection decoupling control for refrigeration systems[J]. Journal of Xi'an Jiaotong University, 2016, 50(9):85-90(in Chinese).
[18] 程赟, 陈增强, 孙明玮, 等. 多变量逆解耦自抗扰控制及其在精馏塔过程中的应用[J]. 自动化学报, 2017, 43(6):1080-1088. CHENG Y, CHEN Z Q, SUN M W, et al. Multivariable inverted decoupling active disturbance rejection control and its application to a distillation column process[J]. Acta Automatica Sinica, 2017, 43(6):1080-1088(in Chinese).
[19] ZHAO C, LI D. Control design for the SISO system with the unknown order and the unknown relative degree[J]. ISA Transactions, 2014, 53(4):858-872.
[20] ZHAO C. Capability of ADRC for minimum-phase plants with unknown orders and uncertain relative degrees[C]//29th Chinese Control Conference, 2010:6121-6126.
[21] 徐喆垚, 陈宇坤, 齐乃明, 等. 航天器交会对接模拟系统逼近过程自抗扰控制[J]. 航空学报, 2016, 37(5):1552-1562. XU Z Y, CHEN Y K, QI N M, et al. Active disturbance rejection control for spacecraft rendezvous and docking simulation system during proximity operations[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1552-1562(in Chinese).
[22] LI D, YU W L, ZHOU J, et al. Active disturbance rejection control with adaptive delayed input and its performance monitoring for time-varying delay system[C]//35th Chinese Control Conference, 2016:5964-5969.
[23] 吴文海, 高阳,王子健,等.基于LADRC的舰载V/STOL飞机短距起飞性能优化[J].航空学报, 2019, 40(6):122772. WU W H, GAO Y, WANG Z J, et al. Short take-off performance optimization of carrier-based V/STOL aircraft via LADRC method[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):122772(in Chinese).
[24] HAO S, LIU T, WANG Q G. Enhanced active disturbance rejection control for time-delay systems[J]. IFAC-PapersOnLine, 2017, 50(1):7541-7546.
[25] ZHENG Q L, GAO Z Q. On active disturbance rejection for systems with input time-delays and unknown dynamics[C]//2016 American Control Conference, 2016:95-100.
[26] SMITH O J M. Closer control of loops with dead time[J]. Chemical Engineering Progress, 1957, 53(5):217-219.
Outlines

/