[1] 崔乃刚, 张立佳. 微型航天器与空间非合作目标交会制导方法[J]. 航空学报, 2009, 30(8):1466-1471. CUI N G, ZHANG L J. Guidance of micro-spacecraft for rendezvous with noncooperative target[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8):1466-1471(in Chinese).
[2] 于大腾, 王华, 孙福煜. 考虑潜在威胁区的航天器最优规避机动策略[J]. 航空学报, 2017, 38(1):286-294. YU D T, WANG H, SUN F Y. Optimal evasive maneuver strategy with potential threatening area being considered[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):286-294(in Chinese).
[3] 路勇, 刘晓光, 周宇, 等. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39(1):021302. LU Y, LIU X G, ZHOU Y, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronaustica et Astronautica Sinica, 2018, 39(1):021302(in Chinese).
[4] BANDYOPADHYAY S, CHUNG S J, HADAEGH F Y. Nonlinear attitude control of spacecraft with a large captured object[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(4):754-769.
[5] ZANG L, QIAN S, ZHANG S, et al. Research on angles-only/SINS/CNS relative position and attitude determination algorithm for a tumbling spacecraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(2), 218-228.
[6] SHE Y, SUN J, LI S, et al. Quasi-model free control for the post-capture operation of a non-cooperative target[J]. Acta Astronautica, 2018, 147:59-70.
[7] WANG M, LUO J, YUAN J, et al. Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target[J]. Nonlinear Dynamics, 2018, 92(3):1023-1043.
[8] MA Z, MA O, SHASHIKANTH B N. Optimal approach to and alignment with a rotating rigid body for capture[J]. Journal of the Astronautical Sciences, 2007, 55(4):407-419.
[9] XIN M, PAN H. Nonlinear optimal control of spacecraft approaching a tumbling target[J]. Aerospace Science and Technology, 2011, 15(2):79-89.
[10] MARTINS-FILHO L, JR G A. Guidance and control of position and attitude for rendezvous and dock/berthing with a noncooperative/target spacecraft[J]. Mathematical Problems in Engineering, 2014, 842(2):805-808.
[11] BOYARKO G, YAKIMENKO O, ROMANO M. Optimal rendezvous trajectories of a controlled spacecraft and a tumbling object[J]. Journal of Guidance, Control, and Dynamics, 2015, 34(4):1239-1252.
[12] STONEMAN S, LAMPARIELLO R. A nonlinear optimization method to provide real-time feasible reference trajectories to approach a tumbling target satellite[C]//International Symposium on Artificial Intelligence, Robotics and Eutomation in Space, 2016.
[13] LI Q, YUAN J, ZHANG B, et al. Model predictive control for autonomous rendezvous and docking with a tumbling target[J]. Aerospace Science & Technology, 2017, 69:700-711.
[14] ZAGARIS C, ROMANO M. Reachability analysis of planar spacecraft docking with rotating body in close proximity[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(6):1413-1419.
[15] 李鹏, 岳晓奎, 袁建平. 对翻滚非合作目标终端逼近的姿轨耦合退步控制[J]. 哈尔滨工业大学学报, 2013, 45(1):94-100. LI P, YUE X K, YUAN J P. Coupled backstepping control for spacecraft to approach with a tumbling non-cooperative object during the final phase[J]. Journal of Harbin Institute of Technology, 2013, 45(1):94-100(in Chinese).
[16] 姜博严, 胡庆雷, 石忠, 等. 与自由翻滚目标近距离段交会对接的相对姿轨耦合控制[J]. 宇航学报, 2014, 35(1):54-60. JIANG B Y, HU Q L, SHI Z, et al. Relative position and attitude coupled controller design for approaching and docking with a freely tumbling target[J]. Journal of Astronautics, 2014, 35(1):54-60(in Chinese).
[17] 刘将辉, 李海阳. 对失控翻滚目标逼近的增广比例导引律控制[J]. 系统工程与电子技术, 2018, 40(10):2311-2316. LIU J H, LI H Y. Augmented proportional navigation control for approach to uncontrolled tumbling satellite[J]. Systems Engineering and Electronics, 2018, 40(10):2311-2316(in Chinese).
[18] 孙冲, 袁建平, 万文娅, 等. 自由翻滚故障卫星外包络抓捕及抓捕路径优化[J]. 航空学报, 2018, 39(11):322192. SUN C, YUAN J P, WAN W Y, et al. Outside envelop grasping method and approaching trajectory optimization for tumbling malfunctional satellite capture[J]. Acta Aeronaustica et Astronautica Sinica, 2018, 39(11):322192(in Chinese).
[19] BREGER L S, HOW J P. Safe trajectories for autonomous rendezvous of spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1478-1489.
[20] PARK H, CAIRANO S D, KOLMANOYSKY I. Model predictive control for spacecraft rendezvous and docking with a rotating/tumbling platform and for debris avoidance[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2011:1922-1927.
[21] CHEN T, WEN H, HU H, et al. On-orbit assembly of a team of flexible spacecraft using potential field based method[J]. Acta Astronautica, 2017, 133:221-232.
[22] DONG H, HU Q, AKELLA M R. Safety control for spacecraft autonomous rendezvous and docking under motion constraints[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(7):1-14.
[23] DONG H, HU Q, AKELLA M R. Dual-quaternion-based spacecraft autonomous rendezvous and docking under six-degree-of-freedom motion constraints[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(1):1-13.
[24] 张大伟, 宋申民, 裴润, 等. 非合作目标自主交会对接的椭圆蔓叶线势函数制导[J]. 宇航学报, 2010, 31(10):2259-2268. ZHANG D W, SONG S M, PEI R, et al. Ellipse cissoid-based potential function guidance for autonomous rendezvous and docking with non-cooperative target[J]. Journal of Astronautics, 2010, 31(10):2259-2268(in Chinese).
[25] ZHU S, SUN R, WANG J, et al. Robust model predictive control for multi-step short range spacecraft rendezvous[J]. Advances in Space Research, 2018, 62(1):111-126.
[26] FENG L, NI Q, BAI Y, et al. Optimal sliding mode control for spacecraft rendezvous with collision avoidance[C]//Evolutionary Computation. Piscataway, NJ:IEEE Press, 2016:2661-2668.
[27] CAO L, QIAO D, XU J. Suboptimal artificial potential function sliding mode control for spacecraft rendezvous with obstacle avoidance[J]. Acta Astronautica, 2018, 143:133-146.
[28] NICOLETTA B, ELISA C, MATTEO D, et al. Obstacle avoidance with potential field applied to a rendezvous maneuver[J]. Applied Sciences, 2017, 7(10):1042.
[29] 刘将辉, 李海阳. 对失控翻滚目标逼近的神经网络自适应滑模控制[J]. 宇航学报, 2019, 40(6):684-693. LIU J H, LI H Y. Adaptive sliding mode control based on neural network for approaching to an uncontrolled tumbling satellite[J]. Journal of Astronautics, 2019, 40(6):684-693(in Chinese).
[30] SHIN H S, LI K B, TSOURDOS A. A new three-dimensional sliding mode guidance law variation with finite time convergence[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5):2221-2232.