[1] 欧阳小穗, 刘毅. 高速流场中变刚度复合材料层合板颤振分析[J]. 航空学报, 2018, 39(3):221539. OUYANG X S, LIU Y. Panel flutter of variable stiffness composite laminates in supersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):221539(in Chinese).
[2] 卓航, 李是卓, 韩恩林, 等. 高强高模聚酰亚胺纤维增强环氧树脂复合材料力学性能与破坏机制[J]. 复合材料学报, 2019, 36(9):2101-2109. ZHUO H, LI S Z, HAN E L, et al. Mechanical properties and failure mechanism of high strength and high modulus polyimide fiber reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2019, 36(9):2101-2109(in Chinese).
[3] 沈裕峰, 李勇, 王鑫, 等. 湿热环境下K-cor夹层复合材料的力学性能[J]. 航空学报, 2016, 37(7):2303-2311. SHEN Y F, LI Y, WANG X, et al. Mechanical properties of K-cor sandwich composite under hygrothermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2303-2311(in Chinese).
[4] 李汪颖, 杨雄伟, 李跃明. 多孔材料夹层结构声辐射特性的两尺度拓扑优化设计[J]. 航空学报, 2016, 37(4):1196-1206. LI W Y, YANG X W, LI Y M. Two-scale topology optimization design of sandwich structures of a porous core with respect to sound radiation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1196-1206(in Chinese).
[5] LIU Y, ZHANG Y C, LIU S T, et al. Effect of unbonded areas around hole on the fatigue crack growth life of diffusion bonded titanium alloy laminates[J]. Engineering Fracture Mechanics, 2016, 163:176-188.
[6] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2773-2797(in Chinese).
[7] PHIL E, SOUTIS C. Polymer composites in the aerospace industry[M]. Armstand:Elsevier, 2014.
[8] BOLOTIN V V. Delaminations in composite structures:Its origin, buckling, growth and stability[J]. Composites Part B:Engineering, 1996, 27(2):129-145.
[9] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1):171-199. ZHAO L B, GONG Y, ZHANG J Y. A survey on the delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):171-199(in Chinese).
[10] 孙长玺. 基于形状等效和刚度折减的复合材料分层损伤分析方法[D]. 大连:大连理工大学, 2016:1-2. SUN C X. Analysis method for composite delamination based on shape simplification and stiffness degradation[D]. Dalian:Dalian University of Technology, 2016:1-2(in Chinese).
[11] REISSNER E. The effect of transverse shear deformation on the bending of elastic plates[J]. Journal of Applied Mechanics, 1945, 12:69-77.
[12] REDDY J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4):745-752.
[13] REDDY J N. An evaluation of equivalent-single-layer and layerwise theories of composite laminates[J]. Composite structures, 1993, 25(1-4):21-35.
[14] XING Y F, WU Y, LIU B, et al. Static and dynamic analyses of laminated plates using a layerwise theory and a radial basis function finite element method[J]. Composite Structures, 2017, 170:158-168.
[15] MURAKAMI H. Laminated composite plate theory with improved in-plane responses[J]. Journal of Applied Mechanics, 1986, 53(3):661-666.
[16] DI SCIUVA M. Multilayered anisotropic plate models with continuous interlaminar stresses[J]. Composite Structures, 1992, 22(3):149-167.
[17] CHO M, PARMERTER R. Efficient higher order composite plate theory for general lamination configurations[J]. AIAA Journal, 1993, 31(7):1299-1306.
[18] TESSLER A, DI SCIUVA M, GHERLONE M. A refined zigzag beam theory for composite and sandwich beams[J]. Journal of Composite Materials, 2009, 43:1051-1081.
[19] REDDY J N. Mechanics of laminated composite plates and shells:Theory and analysis[M]. 2nd ed. Boca Raton:CRC press, 2004.
[20] CARRERA E. Cz0 requirements-models for the two dimensional analysis of multilayered structures[J]. Composite Structures, 1997, 37(3-4):373-383.
[21] LEKHNITSKII S G. Strength calculation of composite beams[J]. Vestnik inzhen itekhnikov 1935. No. 9.
[22] DI SCIUVA M. Bending, vibration and buckling of simply supported thick multilayered orthotropic plates:An evaluation of a new displacement model[J]. Journal of Sound and Vibration, 1986, 105(3):425-442.
[23] CHO M, OH J. Higher order zig-zag plate theory under thermo-electric-mechanical loads combined[J]. Composites Part B:Engineering, 2003, 34(1):67-82.
[24] TESSLER A. Refined zigzag theory for homogeneous, laminated composite, and sandwich beams derived from Reissner's mixed variational principle[J]. Meccanica, 2015, 50(10):2621-2648.
[25] IURLARO L, GHERLONE M, DI SCIUVA M, et al. Refined Zigzag Theory for laminated composite and sandwich plates derived from Reissner's Mixed Variational Theorem[J]. Composite Structures, 2015, 133:809-817.
[26] 贺丹, 杨万里. 基于广义变分原理和锯齿理论的高精度层合梁模型[J]. 宇航总体技术, 2017, 1(2):26-32. HE D, YANG W L. A high-accuracy composite laminated beam model based on generalized variational principle and zigzag theory[J]. Astronautical Systems Engineering Technology, 2017, 1(2):26-32(in Chinese).
[27] 郭绍伟, 张永存, 宋恩鹏, 等. 开孔碳纤维层合板层间应力分析[J]. 复合材料学报, 2011, 28(5):228-233. GUO S W, ZHANG Y C, SONG E P, et al. Interlaminar stress analysis of carbon fiber reinforced laminated plate with a hole[J]. Acta Materiae Compositae Sinica, 2011, 28(5):228-233(in Chinese).
[28] 刘颖卓, 张永存, 刘书田, 等. 考虑复合材料蒙皮稳定性的飞机翼面结构布局优化设计[J]. 航空学报, 2010, 31(10):1985-1992. LIU Y Z, ZHANG Y C, LIU S T, et al. Layout optimization design of wing structures with consideration of stability of composite skin[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10):1985-1992(in Chinese).
[29] CARRERA E. On the use of the Murakami's zig-zag function in the modeling of layered plates and shells[J]. Computers & Structures, 2004, 82(7-8):541-554.
[30] WU Z, CHEN W J. A global higher-order zig-zag model in terms of the HW variational theorem for multilayered composite beams[J]. Composite Structures, 2016, 158:128-136.
[31] REN X H, CHEN W J, WU Z. A new zig-zag theory and C0 plate bending element for composite and sandwich plates[J]. Archive of Applied Mechanics, 2011, 81(2):185-197.
[32] REN X H, CHEN W J, WU Z. A C0-type zig-zag theory and finite element for laminated composite and sandwich plates with general configurations[J]. Archive of Applied Mechanics, 2012, 82(3):391-406.
[33] WU Z, SH L O, REN X H. A C0 zig-zag model for the analysis of angle-ply composite thick plates[J]. Composite Structures, 2015, 127:211-223.
[34] HAN J W, KIM J S, CHO M. Generalization of the C0-type zig-zag theory for accurate thermomechanical analysis of laminated composites[J]. Composites Part B:Engineering, 2017, 122:173-191.
[35] PANDEY S, PRADYUMMA S. A new C0 higher-order layerwise finite element formulation for the analysis of laminated and sandwich plates[J]. Composite Structures, 2015, 131:1-16.
[36] DI SCIUVA M, GHERLONE M, IURLARO L, et al. A class of higher-order C0 composite and sandwich beam elements based on the refined zigzag theory[J]. Composite Structures, 2015, 132:784-803.
[37] WU Z, MA R, CHEN W J. A C0 three-node triangular element based on preprocessing approach for thick sandwich plates[J]. Journal of Sandwich Structures & Materials, 2017, 21(6):1099636217729731.
[38] JIN Q L, YAO W A. Efficient three-node triangular element based on a new mixed global-local higher-order theory for multilayered composite plates[J/OL]. (2019-03-23)[2019-03-26]. Mechanics of Advanced Materials and Structures, http://doi.org/10.1080/15376494.2018.1490469.
[39] WU Z, SH L O, REN X H. Effects of displacement parameters in zig-zag theories on displacements and stresses of laminated composites[J]. Composite Structures, 2014, 110:276-288.
[40] ICARDI U, SOLA F. Assessment of recent zig-zag theories for laminated and sandwich structures[J]. Composites Part B Engineering, 2016, 97:26-52.
[41] GHERLONE M. On the use of zigzag functions in equivalent single layer theories for laminated composite and sandwich beams:A comparative study and some observations on external weak layers[J]. Journal of Applied Mechanics, 2013, 80(6):061004.
[42] REDDY J N. Energy principles and variational methods in applied mechanics[M]. New York:John Wiley & Sons, 2017.
[43] KIM J S, CHO M. Enhanced first-order theory based on mixed formulation and transverse normal effect[J]. International Journal of Solids and Structures, 2007, 44(3-4):1256-1276.
[44] PAGANO N J. Exact solutions for composite laminates in cylindrical bending[J]. Journal of Composite Materials, 1969, 3(3):398-411.
[45] TAHANI M. Analysis of laminated composite beams using layerwise displacement theories[J]. Composite Structures, 2007, 79(4):535-547.
[46] TESSLER A, DI SCIUVA M, GHERLONE M. Refinement of Timoshenko beam theory for composite and sandwich beams using zigzag kinematics:20070035078[R]. Washington, D.C.:NASA, 2007.
[47] HAN J W, KIM J S, CHO M. Generalization of the C0-type zigzag theory for accurate thermomechanical analysis of laminated composites[J]. Composites Part B:Engineering, 2017, 122:173-191.
[48] OÑATE E, EIJO A, OLLER S. Simple and accurate two-noded beam element for composite laminated beams using a refined zigzag theory[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 213:362-382.
[49] AVERILL R C. Static and dynamic response of moderately thick laminated beams with damage[J]. Composites Engineering, 1994, 4(4):381-395.
[50] IURLARO L, GHERLONE M, DI SCIUVA M. The (3,2)-mixed refined zigzag theory for generally laminated beams:Theoretical development and C0 finite element formulation[J]. International Journal of Solids and Structures, 2015, 73:1-19.