Solid Mechanics and Vehicle Conceptual Design

A new zig-zag theory for accurately predicting interlaminar shear stress of laminated beam structures

  • YANG Shengqi ,
  • ZHANG Yongcun ,
  • LIU Shutian
Expand
  • State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China

Received date: 2019-03-26

  Revised date: 2019-04-22

  Online published: 2019-07-15

Supported by

National Natural Science Foundation of China (U1808215, 11572071, 11572073); the Fundamental Research Funds for the Central Universities of China (DUT18ZD103); 111 Project (B14013)

Abstract

Laminated beams are typical bearing members in the aerospace industry. Excessive interlaminar shear stress (transverse shear stress at the interlayer) is the main cause of delamination failure. The existing laminated beam models can not accurately predict the transverse shear stress for the composite laminated beams with large number of layers and sandwich beams with large differences in material properties. In this study, a new zig-zag theoretical model that can accurately predict the transverse shear stress of laminated beams is proposed by constructing a new linear piecewise zig-zag function. Several typical numerical examples show that the new zig-zag theoretical model has higher calculation accuracy for the composite laminated beams with large number of layers and sandwich beams with large differences in material properties, and can predict the delamination of laminated beams. In addition, the model fulfills a priori the interlaminar transverse shear stress continuous condition at the interfaces and can accurately predict the transverse shear stress of laminated beam without the post-processing of three-dimensional equilibrium equation. The number of unknown variables of this model in displacement field is small. Without the first derivatives of transverse displacement in the displacement field, this model is well suited for developing C0 elements.

Cite this article

YANG Shengqi , ZHANG Yongcun , LIU Shutian . A new zig-zag theory for accurately predicting interlaminar shear stress of laminated beam structures[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(11) : 223028 -223028 . DOI: 10.7527/S1000-6893.2019.23028

References

[1] 欧阳小穗, 刘毅. 高速流场中变刚度复合材料层合板颤振分析[J]. 航空学报, 2018, 39(3):221539. OUYANG X S, LIU Y. Panel flutter of variable stiffness composite laminates in supersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):221539(in Chinese).
[2] 卓航, 李是卓, 韩恩林, 等. 高强高模聚酰亚胺纤维增强环氧树脂复合材料力学性能与破坏机制[J]. 复合材料学报, 2019, 36(9):2101-2109. ZHUO H, LI S Z, HAN E L, et al. Mechanical properties and failure mechanism of high strength and high modulus polyimide fiber reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2019, 36(9):2101-2109(in Chinese).
[3] 沈裕峰, 李勇, 王鑫, 等. 湿热环境下K-cor夹层复合材料的力学性能[J]. 航空学报, 2016, 37(7):2303-2311. SHEN Y F, LI Y, WANG X, et al. Mechanical properties of K-cor sandwich composite under hygrothermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2303-2311(in Chinese).
[4] 李汪颖, 杨雄伟, 李跃明. 多孔材料夹层结构声辐射特性的两尺度拓扑优化设计[J]. 航空学报, 2016, 37(4):1196-1206. LI W Y, YANG X W, LI Y M. Two-scale topology optimization design of sandwich structures of a porous core with respect to sound radiation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1196-1206(in Chinese).
[5] LIU Y, ZHANG Y C, LIU S T, et al. Effect of unbonded areas around hole on the fatigue crack growth life of diffusion bonded titanium alloy laminates[J]. Engineering Fracture Mechanics, 2016, 163:176-188.
[6] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2773-2797(in Chinese).
[7] PHIL E, SOUTIS C. Polymer composites in the aerospace industry[M]. Armstand:Elsevier, 2014.
[8] BOLOTIN V V. Delaminations in composite structures:Its origin, buckling, growth and stability[J]. Composites Part B:Engineering, 1996, 27(2):129-145.
[9] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1):171-199. ZHAO L B, GONG Y, ZHANG J Y. A survey on the delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):171-199(in Chinese).
[10] 孙长玺. 基于形状等效和刚度折减的复合材料分层损伤分析方法[D]. 大连:大连理工大学, 2016:1-2. SUN C X. Analysis method for composite delamination based on shape simplification and stiffness degradation[D]. Dalian:Dalian University of Technology, 2016:1-2(in Chinese).
[11] REISSNER E. The effect of transverse shear deformation on the bending of elastic plates[J]. Journal of Applied Mechanics, 1945, 12:69-77.
[12] REDDY J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4):745-752.
[13] REDDY J N. An evaluation of equivalent-single-layer and layerwise theories of composite laminates[J]. Composite structures, 1993, 25(1-4):21-35.
[14] XING Y F, WU Y, LIU B, et al. Static and dynamic analyses of laminated plates using a layerwise theory and a radial basis function finite element method[J]. Composite Structures, 2017, 170:158-168.
[15] MURAKAMI H. Laminated composite plate theory with improved in-plane responses[J]. Journal of Applied Mechanics, 1986, 53(3):661-666.
[16] DI SCIUVA M. Multilayered anisotropic plate models with continuous interlaminar stresses[J]. Composite Structures, 1992, 22(3):149-167.
[17] CHO M, PARMERTER R. Efficient higher order composite plate theory for general lamination configurations[J]. AIAA Journal, 1993, 31(7):1299-1306.
[18] TESSLER A, DI SCIUVA M, GHERLONE M. A refined zigzag beam theory for composite and sandwich beams[J]. Journal of Composite Materials, 2009, 43:1051-1081.
[19] REDDY J N. Mechanics of laminated composite plates and shells:Theory and analysis[M]. 2nd ed. Boca Raton:CRC press, 2004.
[20] CARRERA E. Cz0 requirements-models for the two dimensional analysis of multilayered structures[J]. Composite Structures, 1997, 37(3-4):373-383.
[21] LEKHNITSKII S G. Strength calculation of composite beams[J]. Vestnik inzhen itekhnikov 1935. No. 9.
[22] DI SCIUVA M. Bending, vibration and buckling of simply supported thick multilayered orthotropic plates:An evaluation of a new displacement model[J]. Journal of Sound and Vibration, 1986, 105(3):425-442.
[23] CHO M, OH J. Higher order zig-zag plate theory under thermo-electric-mechanical loads combined[J]. Composites Part B:Engineering, 2003, 34(1):67-82.
[24] TESSLER A. Refined zigzag theory for homogeneous, laminated composite, and sandwich beams derived from Reissner's mixed variational principle[J]. Meccanica, 2015, 50(10):2621-2648.
[25] IURLARO L, GHERLONE M, DI SCIUVA M, et al. Refined Zigzag Theory for laminated composite and sandwich plates derived from Reissner's Mixed Variational Theorem[J]. Composite Structures, 2015, 133:809-817.
[26] 贺丹, 杨万里. 基于广义变分原理和锯齿理论的高精度层合梁模型[J]. 宇航总体技术, 2017, 1(2):26-32. HE D, YANG W L. A high-accuracy composite laminated beam model based on generalized variational principle and zigzag theory[J]. Astronautical Systems Engineering Technology, 2017, 1(2):26-32(in Chinese).
[27] 郭绍伟, 张永存, 宋恩鹏, 等. 开孔碳纤维层合板层间应力分析[J]. 复合材料学报, 2011, 28(5):228-233. GUO S W, ZHANG Y C, SONG E P, et al. Interlaminar stress analysis of carbon fiber reinforced laminated plate with a hole[J]. Acta Materiae Compositae Sinica, 2011, 28(5):228-233(in Chinese).
[28] 刘颖卓, 张永存, 刘书田, 等. 考虑复合材料蒙皮稳定性的飞机翼面结构布局优化设计[J]. 航空学报, 2010, 31(10):1985-1992. LIU Y Z, ZHANG Y C, LIU S T, et al. Layout optimization design of wing structures with consideration of stability of composite skin[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10):1985-1992(in Chinese).
[29] CARRERA E. On the use of the Murakami's zig-zag function in the modeling of layered plates and shells[J]. Computers & Structures, 2004, 82(7-8):541-554.
[30] WU Z, CHEN W J. A global higher-order zig-zag model in terms of the HW variational theorem for multilayered composite beams[J]. Composite Structures, 2016, 158:128-136.
[31] REN X H, CHEN W J, WU Z. A new zig-zag theory and C0 plate bending element for composite and sandwich plates[J]. Archive of Applied Mechanics, 2011, 81(2):185-197.
[32] REN X H, CHEN W J, WU Z. A C0-type zig-zag theory and finite element for laminated composite and sandwich plates with general configurations[J]. Archive of Applied Mechanics, 2012, 82(3):391-406.
[33] WU Z, SH L O, REN X H. A C0 zig-zag model for the analysis of angle-ply composite thick plates[J]. Composite Structures, 2015, 127:211-223.
[34] HAN J W, KIM J S, CHO M. Generalization of the C0-type zig-zag theory for accurate thermomechanical analysis of laminated composites[J]. Composites Part B:Engineering, 2017, 122:173-191.
[35] PANDEY S, PRADYUMMA S. A new C0 higher-order layerwise finite element formulation for the analysis of laminated and sandwich plates[J]. Composite Structures, 2015, 131:1-16.
[36] DI SCIUVA M, GHERLONE M, IURLARO L, et al. A class of higher-order C0 composite and sandwich beam elements based on the refined zigzag theory[J]. Composite Structures, 2015, 132:784-803.
[37] WU Z, MA R, CHEN W J. A C0 three-node triangular element based on preprocessing approach for thick sandwich plates[J]. Journal of Sandwich Structures & Materials, 2017, 21(6):1099636217729731.
[38] JIN Q L, YAO W A. Efficient three-node triangular element based on a new mixed global-local higher-order theory for multilayered composite plates[J/OL]. (2019-03-23)[2019-03-26]. Mechanics of Advanced Materials and Structures, http://doi.org/10.1080/15376494.2018.1490469.
[39] WU Z, SH L O, REN X H. Effects of displacement parameters in zig-zag theories on displacements and stresses of laminated composites[J]. Composite Structures, 2014, 110:276-288.
[40] ICARDI U, SOLA F. Assessment of recent zig-zag theories for laminated and sandwich structures[J]. Composites Part B Engineering, 2016, 97:26-52.
[41] GHERLONE M. On the use of zigzag functions in equivalent single layer theories for laminated composite and sandwich beams:A comparative study and some observations on external weak layers[J]. Journal of Applied Mechanics, 2013, 80(6):061004.
[42] REDDY J N. Energy principles and variational methods in applied mechanics[M]. New York:John Wiley & Sons, 2017.
[43] KIM J S, CHO M. Enhanced first-order theory based on mixed formulation and transverse normal effect[J]. International Journal of Solids and Structures, 2007, 44(3-4):1256-1276.
[44] PAGANO N J. Exact solutions for composite laminates in cylindrical bending[J]. Journal of Composite Materials, 1969, 3(3):398-411.
[45] TAHANI M. Analysis of laminated composite beams using layerwise displacement theories[J]. Composite Structures, 2007, 79(4):535-547.
[46] TESSLER A, DI SCIUVA M, GHERLONE M. Refinement of Timoshenko beam theory for composite and sandwich beams using zigzag kinematics:20070035078[R]. Washington, D.C.:NASA, 2007.
[47] HAN J W, KIM J S, CHO M. Generalization of the C0-type zigzag theory for accurate thermomechanical analysis of laminated composites[J]. Composites Part B:Engineering, 2017, 122:173-191.
[48] OÑATE E, EIJO A, OLLER S. Simple and accurate two-noded beam element for composite laminated beams using a refined zigzag theory[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 213:362-382.
[49] AVERILL R C. Static and dynamic response of moderately thick laminated beams with damage[J]. Composites Engineering, 1994, 4(4):381-395.
[50] IURLARO L, GHERLONE M, DI SCIUVA M. The (3,2)-mixed refined zigzag theory for generally laminated beams:Theoretical development and C0 finite element formulation[J]. International Journal of Solids and Structures, 2015, 73:1-19.
Outlines

/