Material Engineering and Mechanical Manufacturing

Springback prediction for Z-shaped profiles in roll bending process based on neutral layer shift

  • WANG Anheng ,
  • XUE Hongqian ,
  • YANG Yanli ,
  • WEI Yaoguang
Expand
  • 1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC Chengdu Aircraft Industrial(Group) Co., Ltd., Chengdu 610092, China

Received date: 2019-05-05

  Revised date: 2019-05-28

  Online published: 2019-07-02

Supported by

National Natural Science Foundation of China (91860206); Shaanxi Province Key R & D Program (2019KW-063)

Abstract

This paper focuses on improving the forming precision of Z-shaped profiles with large-section in the four-roll bending process. An analytical springback model is established for Z-shaped profiles with large-section by introducing neutral layer shift, considering the influence of material properties, geometric parameters, and forming radii on the springback. The bending springback laws of 7075-O and 7475-O aluminum alloy Z-section profiles under different forming radii are studied, and roll bending tests are carried out to validate the springback model. The results indicate that compared with the empirical model which ignores the influence of neutral layer shift, the proposed model based on neutral layer shift can accurately predict the springback for Z-shaped profiles with large cross-section. The maximum relative error of predicting springback deformation for Z-shaped profiles with the same radius of curvature changes from 11.681% to 3.347%.

Cite this article

WANG Anheng , XUE Hongqian , YANG Yanli , WEI Yaoguang . Springback prediction for Z-shaped profiles in roll bending process based on neutral layer shift[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(12) : 423127 -423127 . DOI: 10.7527/S1000-6893.2019.23127

References

[1] YU J Q, ZHAO G Q, CHEN L. Investigation of interface evolution, microstructure and mechanical properties of solid-state bonding seams in hot extrusion process of aluminum alloy profiles[J]. Journal of Materials Processing Technology, 2016, 230:153-166.
[2] LOU S M, ZHAO G Q, WANG R, et al. Modeling of aluminum alloy profile extrusion process using finite volume method[J]. Journal of Materials Processing Technology, 2008, 206(1-3):481-490.
[3] HUA M, BAINES K, COLE I M. Bending mechanisms, experimental techniques and preliminary tests for the continuous four-roll plate bending process[J]. Journal of Materials Processing Technology, 1995, 48:159-172.
[4] CAI Z Y, LI M Z, LAN Y W. Three-dimensional sheet metal continuous forming process based on flexible roll bending:Principle and experiments[J]. Journal of Materials Processing Technology, 2012, 212(1):120-127.
[5] BAEK G, SHIM D. FE Simulation-based process design for manufacturing structural members of commercial vehicle using pipes with rectangular cross-sections[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(4):723-733.
[6] HUA M. The mechanics of continuous roller bending of plates[D]. Aston:Aston University, 1986.
[7] HUA M, SANSOME D H, BAINES K. Mathematical modeling of the internal bending moment at the top roll contact in multi-pass four-roll thin-plate bending[J]. Journal of Materials Processing Technology, 1995, 52(2):425-459.
[8] 陈毓勋. 板材与型材弯曲回弹控制原理与方法[M]. 北京:国防工业出版社, 1990:116-123. CHEN Y X. Principle and method of springback control of plate and profiles[M]. Beijing:National Defense Industry Press, 1990:116-123(in Chinese).
[9] EL-DOMIATY A A, ELSHARKAWY A A. Stretch-bending analysis of U-section beams[J]. International Journal of Machine Tools and Manufacture, 1998, 38(1):75-95.
[10] ELSHARKAWY A A, EL-DOMIATY A A. Determination of stretch-bendability limits and springback for T-section beams[J]. Journal of Materials Processing Tech, 2001, 110(3):265-276.
[11] YU C L, LI X Q. Theoretical analysis on springback of L-section extrusion in rotary stretch bending process[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(12):2705-2710.
[12] ZHAI R X, DING X H, YU S M, et al. Stretch bending and springback of profile in the loading method of prebending and tension[J]. International Journal of Mechanical Sciences, 2018, 144:746-764.
[13] ZHU Y X, CHEN W, LI H P, et al. Springback study of RDB of rectangular H96 tube[J]. International Journal of Mechanical Sciences, 2018, 138:282-294.
[14] LI H, YANG H, SONG F F, et al. Springback characterization and behaviors of high-strength Ti-3Al-2.5V tube in cold rotary draw bending[J]. Journal of Materials Processing Technology, 2012, 212(9):1973-1987.
[15] LI H, MA J, LIU B Y, et al. An insight into neutral layer shifting in tube bending[J]. International Journal of Machine Tools and Manufacture, 2018, 126:51-70.
[16] 刘碧颖,李恒,李龙,等. 引入材料参数的弯管中性层偏移解析模型[J]. 航空学报, 2016,37(3):1074-1082. LIU B Y, LI H, LI L, et al. Analytical model of neutral layer displacement of pipe parameters[J]. Acta Aeronautica et Astronautica Sinica, 2016,37(3):1074-1082(in Chinese).
[17] LIU T J, WANG Y J, WANG J B, et al. Springback analysis of Z & T-section 2196-T8511 and 2099-T83 Al-Li alloys extrusions in displacement controlled cold stretch bending[J]. Journal of Materials Processing Technology, 2015, 225:295-309.
[18] 马自勇,马立峰,黄庆学,等. 基于弹塑性压力中性层偏移的棒材二辊矫直回弹模型[J]. 中南大学学报(自然科学版), 2016, 47(9):3020-3030. MA Z Y, MA L F, HUANG Q X, et al. Neutral layer offset rebound model based on elastic-plastic pressure[J]. Journal of Central South University(Science and Techno-logy), 2016, 47(9):3020-3030(in Chinese).
[19] ZHAN M, WANG Y, YANG H, et al. An analytic model for tube bending springback considering different parameter variations of Ti-alloy tubes[J]. Journal of Materials Processing Technology, 2016, 236:123-137.
[20] ZHAN M, XING L, GAO P F, et al. An analytical springback model for bending of welded tube considering the weld characteristics[J]. International Journal of Mechanical Sciences, 2019, 150:594-609.
[21] 官英平,张庆,赵军. 中性层内移对弯曲回弹的影响[J]. 锻压技术, 2007, 32(2):26-28. GUAN Y P, ZHANG Q, ZHAO J. Influence of neutral layer in side displacement on bending springback[J]. Forging & Stamping Technology, 2007, 32(2):26-28(in Chinese).
[22] MARCINIAK Z, DUNCAN J L, HU S J. Mechanics of sheet metal forming.[M]. Oxford:Butterworth-Heinemann, 2002:82-107.
[23] HILL R. The mathematical theory of plasticity[M]. New York:Oxford University Press, 1950.
[24] WAGONER R, LI M. Simulation of springback:Through-thickness integration[J]. International Journal of Plasticity, 2007, 23(3):345-360.
[25] HAN C, FENG H, YUAN S J. Springback and compensation of bending for hydroforming of advanced high-strength steel welded tubes[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(9-12):3619-3629.
Outlines

/