Solid Mechanics and Vehicle Conceptual Design

Energy-absorbing characteristics of a typical sub-cargo fuselage section of a transport category aircraft

  • FENG Zhenyu ,
  • CHENG Kun ,
  • ZHAO Yifan ,
  • LI Henghui ,
  • XIE Jiang ,
  • MOU Haolei ,
  • WANG Yafeng ,
  • Ge Yujing
Expand
  • 1. Key Laboratory of Civil Aircraft Airworthiness Technology, Civil Aviation Administration of China, Tianjin 300300, China;
    2. College of Airworthiness, Civil Aviation University of China, Tianjin 300300, China;
    3. Aviation Key Laboratory of Science and Technology on Structures Impact Dynamics, Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2019-01-11

  Revised date: 2019-02-15

  Online published: 2019-06-24

Supported by

Aeronautical Science Foundation of China (2017ZD67002); Boeing Foundation (20180159214)

Abstract

To study the crash characteristics of a typical sub-cargo fuselage section under impact load, a crash test is carried out with a three-frame and two-span sub-cargo fuselage section specimen. To study its failure modes and dynamic responses, the test specimen is upside down on a force measuring platform, and the mass of 478.5 kg impacted the test specimen vertically at the speed of 3.95 m/s. Also, a finite element model is established to analyze the correlation between the test and the simulation results and to study the energy absorption characteristics. The results show that the middle stanchions of the three frames are uniformly bent from 32 frame to 34 frame, and the fuselage frames are caused to bend and twist in the same direction, thereby causing the C-channel stanchions to undergo bending deformation in the opposite direction to the middle stanchions and finally forming two plastic hinges at the joint of the fuselage frames with the C-channel stanchions. The failure of the fasteners is mainly caused by the shear failure of 22 flat head rivets at the joint of the stringers and shear webs in the vicinity of the middle stanchions. The peak values of initial acceleration and impact force are 25.1g and 173 kN. The simulation results are well correlated with the test results. The deformation mode of simulation is in good agreement with the experimental results. The maximum compression displacement obtained by simulation is 3.7% different from the test result 24.3 mm, and the peak value of initial acceleration obtained by simulation is 4% different from the test result 25.1g. The simulation analysis finds that the fuselage frames and the middle stanchions are the main energy absorbing components, and the energy absorption contribution accounts for 32.1% and 30.4% of the total energy absorption.

Cite this article

FENG Zhenyu , CHENG Kun , ZHAO Yifan , LI Henghui , XIE Jiang , MOU Haolei , WANG Yafeng , Ge Yujing . Energy-absorbing characteristics of a typical sub-cargo fuselage section of a transport category aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(9) : 222907 -222907 . DOI: 10.7527/S1000-6893.2019.22907

References

[1] GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018:106-123.
[2] Boeing Commercial Airplane Company. Statistical summary of commercial jet airplane accidents, Worldwide Operations 1959-2015[R]. Seattle, Washington, D.C.:Aviation Safety Boeing Commercial Airplanes, 2015.
[3] THOMSON R G, CAIAFA C. Structural response of transport airplanes in crash situations:NASA-TM-85654[R]. Washington,D.C.:NASA, 1983.
[4] ABRAMOWITZ A, SMITH T G, VU T, et al. Vertical drop test of a narrow-body transport fuselage section with overhead stowage bins:2002-01-2995[R]. Warrendale, PA:SAE, 2002.
[5] ABRAMOWITZ A, SMITH T G, VU T. Vertical drop test of a narrow-body transport fuselage section with conformable auxiliary fuel tank onboard:DOT/FAA/AR-00/56[R]. Washington, D.C.:FAA, 2000.
[6] ADAMS A, LANKARANI H M. A modern aerospace modeling approach for evaluation of aircraft fuselage crashworthiness[J]. International Journal of Crashworthiness, 2003, 8(4):401-413.
[7] PÉREZ GALÁN J L, CLIMENT H, LE PAGE F. Non-linear response of metallic and composite aeronautical fuselage structures under crash loads and comparison with full scale test[R]. Barcelona:Construcciones Aeronáuticas S.A. (CASA) and Centre d'Essais Aeronautique de Toulouse (CEAT), 2000.
[8] MALHERBE B, LANGRAND B, CHARLES J L, et al. Improvement of crash models of large aeronautical structures[C]//22nd ICAS Congress Harrogate. Bonn:ICAS, 2000.
[9] HIROKAZU S, HIROMITSU M, KAZUO I, et al. Crashworthiness research on cabin structure at JAXA[C]//5th Triennial International Aircraft Fire and Cabin Safety Research Conference, 2007.
[10] HIROKAZU S, TAKAHIRA A. Improvements on impact energy absorbing ability of open section short columns:AIAA-2010-2894[R]. Reston, VA:AIAA, 2010.
[11] HIROKAZU S, MASAKATSU M, TAKAHIRA A. Impact characteristics estimation of channel section short column under axial impact load:AIAA-2007-2023[R]. Reston, VA:AIAA, 2007.
[12] COLLINS J S, JOHNSON E R. Static and dynamic response of Graphite-Epoxy curved frames[J]. Journal of Composite Materials, 1990, 26(6):792-803.
[13] PEREZ J, JOHNSON E, BOITNOTT R. Design and test of semicircular composite frames optimized for crashworthiness[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, & Materials Conference & Exhibit. Reston, VA:AIAA, 2013.
[14] JONES L, ROBINSON M, FASANELLA E, et al. Experimental and analytical study of the effects of floor location on response of composite fuselage frames:AIAA-1992-2473[R]. Reston, VA:AIAA, 1992.
[15] KAREN E J, EDWIN L F, SOTIRIS K. Development of a scale model composite fuselage concept for improved crashworthiness[J]. Journal of Aircraft, 2001, 38(1):95-103.
[16] SOTIRIS K, KAREN E J, LITTELL J D. Full-scale crash test of an MD-500 helicopter with deployable energy absorbers[C]//American Helicopter Society 66th Annual Forum. Alexandria:Vertical Flight Society, 2010.
[17] MOSTAFA R. Virtual test & simulation[C]//Engineering, Operations & Technology Boeing Research & Technology, 2013.
[18] HACHENBERG D, LAVINGE V, MAHE M. Crashworthiness of fuselage hybrid structure[C]//Eighth Triennial International Aircraft Fire and Cabin Safety Research Conference (8IARCSFC).Washington, D.C.:FAA, 2016.
[19] ARNAUDEAU F, MAHE M, DELETOMBE E, et al. Crashworthiness of aircraft composites structures[C]//ASME 2002 International Mechanical Engineering Congress and Exposition. New York:ASME, 2002:31-40.
[20] DELSART D, PORTEMONT G, WAIMER M. Crash testing of a CFRP commercial aircraft sub-cargo fuselage section[J]. Procedia Structural Integrity, 2016, 2:2198-2205.
[21] CAPRIO F D, IGNARRA M, MARULO F, et al. De-sign of composite stanchions for the cargo subfloor structure of a civil aircraft[J]. Procedia Engineering, 2016, (167):88-96.
[22] WIGGENRAAD J F M, SANTORO D, LEPAGE F, et al. Development of a crashworthy composite fuselage concept for a commuter aircraft:NLR-TP-2001-108[R]. Amsterdam:NLR, 2001.
[23] 刘小川, 周苏枫, 马君峰, 等. 民机客舱下部吸能结构分析与试验相关性研究[J]. 航空学报, 2012, 33(12):2202-2210. LIU X C, ZHOU S F, MA J F, et al. Correlation study of crash analysis and test of civil airplane subfloor energy absorption structure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2202-2210(in Chinese).
[24] 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9):2130-2140. LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2130-2140(in Chinese).
[25] LIU X C, GUO J, BAI C, et al. Drop test and crash simulation of a civil airplane fuselage section[J]. Chinese Journal of Aeronautics, 2015, 28(2):447-456.
[26] 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响[J].航空学报, 2010, 31(2):271-276. REN Y R, XIANG J W, LUO Z P, et al. Influence of cabin floor diagonal strut on crashworthiness of typical fuselage section of civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):271-276(in Chinese).
[27] REN Y R, XIANG J W. A comparative study of the crashworthiness of civil aircraft with different strut configurations[J]. International Journal of Crashworthiness, 2010, 15(3):321-330.
[28] 郑建强, 向锦武, 罗漳平, 等. 民机机身耐撞性设计的波纹板布局[J]. 航空学报, 2010, 31(7):1396-1402. ZHENG J Q, XIANG J W, LUO Z P, et al. Crashworthiness layout of civi1 aircraft using waved-plate for energy absorption[J]. Acta Aeronautica et Astronautica Sinca, 2010, 31(7):1396-1402(in Chinese).
[29] ZHENG J Q, XIANG J W, LUO Z P, et al. The crashworthiness design of transport airplane subfloor using foam material[J]. International Journal of Crashworthiness, 2011, 16(4):375-383.
[30] 郑建强, 向锦武, 罗漳平, 等. 民机机身下部结构耐撞性优化设计[J]. 航空学报, 2012, 33(4):640-649. ZHENG J Q,XIANG J W,LUO Z P, et al. Crashworthiness optimization of civil aircraft subfloor structure[J].Acta Aeronautica et Astroautics Sinca,2012, 33(4):640-649(in Chinese).
[31] MENG F, ZHOU Q, YANG J. Improvement of crashworthiness behavior for simplified structural models of aircraft fuselage[J]. International Journal of Crashworthiness, 2009, 14(1):83-97.
[32] ZHU X F, FENG Y W, XUE X F, et al. Evaluate the crashworthiness response of an aircraft fuselage section with luggage contained in the cargo hold[J]. International Journal of Crashworthiness, 2017, 22(4):347-364.
[33] 何欢, 陈国平, 张家滨. 带油箱结构的机身框段坠撞仿真分析[J]. 航空学报, 2008, 29(3):627-633. HE H, CHEN G P, ZHANG J B. Crash simulation of fuselage section with fuel tank[J]. Acta Aeronautica et Astroautics Sinca, 2008, 29(3):627-633(in Chinese).
[34] ZOU T C, MOU H L, FENG Z Y. Research on effects of oblique struts on crashworthiness of composite fuselage sections[J]. Journal of Aircraft, 2012, 49(6):2059-2063.
[35] MOU H L, ZOU T C, FENG Z Y, et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens[J]. Latin American Journal of Solids and Structures, 2016, 13(6):1187-1202.
[36] MOU H L, XIE J, FENG Z Y, et al. Parametric analysis of composite sinusoidal specimens under quasi-static crushing[J]. The Aeronautical Journal, 2018, 122(1254):1244-1262.
[37] 冯振宇, 解江, 李恒晖, 等. 大飞机货舱地板下部结构有限元建模与适坠性分析[J]. 航空学报, 2019, 40(2):522394. FENG Z Y, XIE J, LI H H, et al. FE modeling and crashworthiness analysis of large aeroplane sub-cargo structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2):522394(in Chinese).
[38] 牟浩蕾, 赵一帆, 刘义, 等. 航空沉头铆钉动态加载试验及失效模式研究[J]. 航空科学技术, 2019, 30(4):69-78. MOU H L, ZHAO Y F, LIU Y, et al. Dynamic loading failure experiment and failure mode analysis of aeronautic countersunk rivets[J]. Aeronautical Science & Technology, 2019, 30(4):69-78(in Chinese).
[39] Society of Automotive Engineers International. Instrumentation for impact test-Part 1, electronic instrumentation:SAE J211/1[S]. New York:Society of Automotive Engineers International, 2007.
Outlines

/