[1] REZA H, SAEED Z R. A new bird model and the effect of bird geometry in impact from various orientations[J]. Aerospace Science and Technology, 2013,28(1):9-20.
[2] REZA H, SAEED Z R. Effect of bird geometry and orientation on bird-target impact analysis using SPH method[J]. International Journal of Crashworthiness 2012,17(4):445-459.
[3] MCCALLUM S C, CONSTANTINOU C. The influence of bird-shape in bird-impact analysis[C]//5th European LS-DYNA Users Conference, 2005.
[4] MCCALLUM S C, SHOJI H, AKIYAMA H. Development of an advanced multi-material bird-strike model using the smoothed particle hydrodynamics method[J]. International Journal of Crashworthiness, 2013, 18(6):579-596.
[5] LAKSHMI S N. Models and methods for bird strike load predictions[D]. Wichita:Wichita State University, 2007.
[6] HEDAYATI R, ZIAEI R S. A new bird modeland the effect of bird geometry in impacts from various orientatons[J]. Aerospace Science and Technology, 2013,28(1):9-20.
[7] HEDAYATI R, SADIGHI M, MOHAMMADI-AGHDAM M. On the difference of pressure readingsfrom the numerical experimental and theoretical results in different bird strike studies[J]. Aerospace Science and Technology, 2014,32(1):260-266.
[8] GUIDA M, MARULO F, POLITO T, et al. Design and testing of a fiber-metal-laminate bird-strike-resistant leading edge[J]. Journal of Aircraft, 2009,46(6):2121-2129.
[9] DAR U A, ZHANG W, XU Y. FE analysis of dynamic response of aircraft windshield against bird impact[J]. International Journal of Aerospace Engineering,2013, 4:1-12.
[10] LIU J, LI Y L, YU X C, et al. A novel design for reinforcing the aircraft tail leading edge structure against bird strike[J].International Journal of Impact Engineering, 2017,81:89-101.
[11] CAPRIOA F D, CRISTILLOA D, SAPUTOC S, et al.Crashworthiness of wing leading edges under bird impact event[J]. Composite Structure, 2019,216:39-52.
[12] YU Z L, XUE P, YAO P L, et al. Analytical determination of the critical impact location for wing leading edge under birdstrike[J]. Latin American Journal of Solids and Structures,2019,16(1):e152.
[13] XIE C J, TONG M B, LIU F, et al. Numerical analysis and experimental verification ofbird impact on civil aircraft's horizontal tailwing leading edge[J]. Journal of Vibration and Shock,2015,34(14):172-178.
[14] WILBECK J S, BARBER J P. Bird impact loading[C]//Shock and Vibration Bulletin,1978:115-120.
[15] ZHANG D H, FEI Q G. Effect of bird geometry and impact orientation in bird striking on a rotary jet-engine fan analysis using SPH method[J]. Aerospace Science and Technology, 2016,54:320-329.
[16] 陈贺贺, 原梅妮, 李莉洲, 等. DYB-3航空有机玻璃风挡鸟撞数值模拟[J]. 中北大学学报, 2018, 39(3):270-276. CHEN H H, YUAN M N, LI L Z, et al. Numerical simulation of DYB-3 aviation organic glass windshield under bird impact[J]. Journal of North University of China, 2018, 39(3):270-276(in Chinese).
[17] 潘春蛟, 顾文标, 邹静, 等. 直升机主桨变距拉杆鸟撞验证技术[J]. 直升机技术, 2017(3):14-19. PAN C J, GU W B, ZOU J, et al. The verification technology of helicopter main rotor pitch control rod damage by bird strike[J]. Helicopter Technique, 2017(3):14-19(in Chinese).
[18] 朱贝蓓, 蔡景. 基于MCMC方法的运输类飞机鸟撞冲击能量研究[J]. 航空计算技术, 2017, 47(1):94-100. ZHU B B, CAI J. Studyon impact energy of bird strike of transport aircraft based on MCMC method[J]. Aeronautical Computing Technique, 2017, 47(1):94-100(in Chinese).
[19] 陈静, 蔡景. 蜂窝夹层结构鸟撞试验数值模拟及参数修正[J]. 中国科技信息, 2018(20):32-35. CHEN J, CAI J. Study on impact energy of bird strike of transport aircraft based on MCMC method[J]. China Science and Technology Information, 2018(20):32-35(in Chinese).
[20] 张海洋,蔚夺魁, 王相平, 等. 鸟撞击风扇转子叶片损伤模拟与试验研究[J]. 推进技术, 2015, 36(9):1382-1388. ZHANG H Y, WEI D K, WANG X P, et al. Numerical and experimental investigation of damage of bird impact on fan blades[J]. Journal of Propulsion Technology, 2015, 36(9):1382-1388(in Chinese).
[21] 庞华华,韩全民. 全尺寸复合材料垂尾前缘抗鸟撞仿真与试验[J]. 航空计算技术, 2014, 44(4):23-28. PANG H H, HAN Q M. Simulation and experiments of bird impact resistance of full-scale composite leading edge of vertical empennage[J]. Aeronautical Computing Technique, 2014, 44(4):23-28(in Chinese).
[22] 幕琴琴,黄文超,燕群,等. 旋转离心应力对叶片鸟撞响应的影响[J]. 航空计算技术, 2014, 44(6):55-58. MU Q Q, HUANG W C, YAN Q, et al. Effect of centrifugal stress on bird striking response of blade[J]. Aeronautical Computing Technique, 2014, 44(6):55-58(in Chinese).
[23] 刘军, 李玉龙, 郭伟国,等.鸟撞平板模型参数反演I:鸟撞平板试验研究[J]. 航空学报, 2011, 32(5):802-811. LIU J, LI Y L,GUO W G, et al. Parameters inverse on on bird constitutive model part I:Study on experiment of bird striking on plate[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):802-811(in Chinese).
[24] 刘军, 李玉龙, 石宵鹏,等.鸟撞平板模型参数反演II:模型参数反演研究[J]. 航空学报, 2011, 32(5):812-821. LIU J, LI Y L, SHI X P, et al. Parameters inverse on bird constitutive model part II:Study on experiment of bird striking on plate[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):812-821(in Chinese).
[25] 王计真, 刘小川. 鸟撞平板试验与鸟体本构参数识别方法[J]. 航空学报, 2017, 38(S1):721550. WANG J Z, LIU X C. Test of bird striking on panel and identification method for bird constitutive parameters[J]. Acta Aeronautica et Astronautica Sinica, 2017,38(S1):721550(in Chinese).
[26] 刘洋,张建军,张积亭,等. 典型金属加筋板鸟撞实验研究[J]. 机械科学与技术, 2015, 34(9):1461-1466. LIU Y, ZHANG J J, ZHANG J T, et al.Experimental investigation of bird strike forstiffened metal plate[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(9):1461-1466(in Chinese).
[27] 关玉璞, 陈伟, 高德平. 航空发动机叶片外物损伤研究现状[J]. 航空学报, 2007, 28(4):851-857. GUAN Y P, CHEN W, GAO D P. Present status of investigation of foreign object damage to blade in aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):851-857(in Chinese).
[28] 刘永强, 王向盈, 唐长红, 等. 四种飞机蒙皮材料抗鸟撞性能对比研究[J]. 航空材料学报, 2015, 35(5):82-89. LIU Y Q, WANG X Y, TANG C H, et al. Experimental investigation of bird strike for stiffened metal plate[J]. Journal of Aeronautical Materials, 2015, 35(5):82-89(in Chinese).
[29] 航空航天工业部科学技术研究院. 复合材料设计手册[M]. 北京:航空工业出版社, 1999:108-109. Academy of Science and Technology, Ministry of Aerospace Industry. Composite material design manual[M]. Beijing:Aviation Industry Press,1999:108-109(in Chinese).
[30] 卞文杰, 万力. 瞬态动力学CAE解决方案MSC.DYTRAN基础教程[M]. 北京:北京大学出版社, 2004:14-15. BIAN W J, WAN L. Transient dynamics CAE solution MSC.DYTRAN basic course[M]. Beijing:Peking University Press,2004:14-15(in Chinese).
[31] BARBER J P, BOEHMAN L I. The modeling of bird impact loads:ADA065049[R]. 1978.