Solid Mechanics and Vehicle Conceptual Design

Multi-Euler domain coupling method in bird strike with flat tail

  • HU Wen'gang ,
  • LIN Changliang ,
  • WANG Gang ,
  • MEN Kunfa
Expand
  • Aircraft Design Institute, AVIC Harbin Aircraft Industry Group Co., Ltd., Harbin 150066, China

Received date: 2018-12-18

  Revised date: 2019-02-25

  Online published: 2019-05-22

Abstract

Bird strike is one of the important factors threatening aviation safety. At present, most of the studies are about one-time bird impact on a single specimen or structure, while few are about secondary impact on the structure caused by penetrating the impact site of the bird body. To study this problem, a full-size model for helicopter tail with multi-Euler coupling is established based on the fluid-solid coupling algorithm. Considering the influence of air, the process of bird strike to the flat tail, damage forms of leading edge and front beam, displacement response of the flat tail, law of the bird impact load, the effect of impact load on the structure of flat tail root are analyzed in detail and are verified with the experimental results. The research shows that if the bird body does not disintegrate when penetrating the leading edge, its secondary impact load on the front beam will also be at high level. The design of flat tail structure needs to consider whether the bird strike will cause the root fracture of flat tail. The bird impact load has the characteristic of step function. The response time of the structure has obvious hysteresis effect compared with the impact load.

Cite this article

HU Wen'gang , LIN Changliang , WANG Gang , MEN Kunfa . Multi-Euler domain coupling method in bird strike with flat tail[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(1) : 222860 -222860 . DOI: 10.7527/S1000-6893.2019.22860

References

[1] REZA H, SAEED Z R. A new bird model and the effect of bird geometry in impact from various orientations[J]. Aerospace Science and Technology, 2013,28(1):9-20.
[2] REZA H, SAEED Z R. Effect of bird geometry and orientation on bird-target impact analysis using SPH method[J]. International Journal of Crashworthiness 2012,17(4):445-459.
[3] MCCALLUM S C, CONSTANTINOU C. The influence of bird-shape in bird-impact analysis[C]//5th European LS-DYNA Users Conference, 2005.
[4] MCCALLUM S C, SHOJI H, AKIYAMA H. Development of an advanced multi-material bird-strike model using the smoothed particle hydrodynamics method[J]. International Journal of Crashworthiness, 2013, 18(6):579-596.
[5] LAKSHMI S N. Models and methods for bird strike load predictions[D]. Wichita:Wichita State University, 2007.
[6] HEDAYATI R, ZIAEI R S. A new bird modeland the effect of bird geometry in impacts from various orientatons[J]. Aerospace Science and Technology, 2013,28(1):9-20.
[7] HEDAYATI R, SADIGHI M, MOHAMMADI-AGHDAM M. On the difference of pressure readingsfrom the numerical experimental and theoretical results in different bird strike studies[J]. Aerospace Science and Technology, 2014,32(1):260-266.
[8] GUIDA M, MARULO F, POLITO T, et al. Design and testing of a fiber-metal-laminate bird-strike-resistant leading edge[J]. Journal of Aircraft, 2009,46(6):2121-2129.
[9] DAR U A, ZHANG W, XU Y. FE analysis of dynamic response of aircraft windshield against bird impact[J]. International Journal of Aerospace Engineering,2013, 4:1-12.
[10] LIU J, LI Y L, YU X C, et al. A novel design for reinforcing the aircraft tail leading edge structure against bird strike[J].International Journal of Impact Engineering, 2017,81:89-101.
[11] CAPRIOA F D, CRISTILLOA D, SAPUTOC S, et al.Crashworthiness of wing leading edges under bird impact event[J]. Composite Structure, 2019,216:39-52.
[12] YU Z L, XUE P, YAO P L, et al. Analytical determination of the critical impact location for wing leading edge under birdstrike[J]. Latin American Journal of Solids and Structures,2019,16(1):e152.
[13] XIE C J, TONG M B, LIU F, et al. Numerical analysis and experimental verification ofbird impact on civil aircraft's horizontal tailwing leading edge[J]. Journal of Vibration and Shock,2015,34(14):172-178.
[14] WILBECK J S, BARBER J P. Bird impact loading[C]//Shock and Vibration Bulletin,1978:115-120.
[15] ZHANG D H, FEI Q G. Effect of bird geometry and impact orientation in bird striking on a rotary jet-engine fan analysis using SPH method[J]. Aerospace Science and Technology, 2016,54:320-329.
[16] 陈贺贺, 原梅妮, 李莉洲, 等. DYB-3航空有机玻璃风挡鸟撞数值模拟[J]. 中北大学学报, 2018, 39(3):270-276. CHEN H H, YUAN M N, LI L Z, et al. Numerical simulation of DYB-3 aviation organic glass windshield under bird impact[J]. Journal of North University of China, 2018, 39(3):270-276(in Chinese).
[17] 潘春蛟, 顾文标, 邹静, 等. 直升机主桨变距拉杆鸟撞验证技术[J]. 直升机技术, 2017(3):14-19. PAN C J, GU W B, ZOU J, et al. The verification technology of helicopter main rotor pitch control rod damage by bird strike[J]. Helicopter Technique, 2017(3):14-19(in Chinese).
[18] 朱贝蓓, 蔡景. 基于MCMC方法的运输类飞机鸟撞冲击能量研究[J]. 航空计算技术, 2017, 47(1):94-100. ZHU B B, CAI J. Studyon impact energy of bird strike of transport aircraft based on MCMC method[J]. Aeronautical Computing Technique, 2017, 47(1):94-100(in Chinese).
[19] 陈静, 蔡景. 蜂窝夹层结构鸟撞试验数值模拟及参数修正[J]. 中国科技信息, 2018(20):32-35. CHEN J, CAI J. Study on impact energy of bird strike of transport aircraft based on MCMC method[J]. China Science and Technology Information, 2018(20):32-35(in Chinese).
[20] 张海洋,蔚夺魁, 王相平, 等. 鸟撞击风扇转子叶片损伤模拟与试验研究[J]. 推进技术, 2015, 36(9):1382-1388. ZHANG H Y, WEI D K, WANG X P, et al. Numerical and experimental investigation of damage of bird impact on fan blades[J]. Journal of Propulsion Technology, 2015, 36(9):1382-1388(in Chinese).
[21] 庞华华,韩全民. 全尺寸复合材料垂尾前缘抗鸟撞仿真与试验[J]. 航空计算技术, 2014, 44(4):23-28. PANG H H, HAN Q M. Simulation and experiments of bird impact resistance of full-scale composite leading edge of vertical empennage[J]. Aeronautical Computing Technique, 2014, 44(4):23-28(in Chinese).
[22] 幕琴琴,黄文超,燕群,等. 旋转离心应力对叶片鸟撞响应的影响[J]. 航空计算技术, 2014, 44(6):55-58. MU Q Q, HUANG W C, YAN Q, et al. Effect of centrifugal stress on bird striking response of blade[J]. Aeronautical Computing Technique, 2014, 44(6):55-58(in Chinese).
[23] 刘军, 李玉龙, 郭伟国,等.鸟撞平板模型参数反演I:鸟撞平板试验研究[J]. 航空学报, 2011, 32(5):802-811. LIU J, LI Y L,GUO W G, et al. Parameters inverse on on bird constitutive model part I:Study on experiment of bird striking on plate[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):802-811(in Chinese).
[24] 刘军, 李玉龙, 石宵鹏,等.鸟撞平板模型参数反演II:模型参数反演研究[J]. 航空学报, 2011, 32(5):812-821. LIU J, LI Y L, SHI X P, et al. Parameters inverse on bird constitutive model part II:Study on experiment of bird striking on plate[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):812-821(in Chinese).
[25] 王计真, 刘小川. 鸟撞平板试验与鸟体本构参数识别方法[J]. 航空学报, 2017, 38(S1):721550. WANG J Z, LIU X C. Test of bird striking on panel and identification method for bird constitutive parameters[J]. Acta Aeronautica et Astronautica Sinica, 2017,38(S1):721550(in Chinese).
[26] 刘洋,张建军,张积亭,等. 典型金属加筋板鸟撞实验研究[J]. 机械科学与技术, 2015, 34(9):1461-1466. LIU Y, ZHANG J J, ZHANG J T, et al.Experimental investigation of bird strike forstiffened metal plate[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(9):1461-1466(in Chinese).
[27] 关玉璞, 陈伟, 高德平. 航空发动机叶片外物损伤研究现状[J]. 航空学报, 2007, 28(4):851-857. GUAN Y P, CHEN W, GAO D P. Present status of investigation of foreign object damage to blade in aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):851-857(in Chinese).
[28] 刘永强, 王向盈, 唐长红, 等. 四种飞机蒙皮材料抗鸟撞性能对比研究[J]. 航空材料学报, 2015, 35(5):82-89. LIU Y Q, WANG X Y, TANG C H, et al. Experimental investigation of bird strike for stiffened metal plate[J]. Journal of Aeronautical Materials, 2015, 35(5):82-89(in Chinese).
[29] 航空航天工业部科学技术研究院. 复合材料设计手册[M]. 北京:航空工业出版社, 1999:108-109. Academy of Science and Technology, Ministry of Aerospace Industry. Composite material design manual[M]. Beijing:Aviation Industry Press,1999:108-109(in Chinese).
[30] 卞文杰, 万力. 瞬态动力学CAE解决方案MSC.DYTRAN基础教程[M]. 北京:北京大学出版社, 2004:14-15. BIAN W J, WAN L. Transient dynamics CAE solution MSC.DYTRAN basic course[M]. Beijing:Peking University Press,2004:14-15(in Chinese).
[31] BARBER J P, BOEHMAN L I. The modeling of bird impact loads:ADA065049[R]. 1978.
Outlines

/