Electronics and Electrical Engineering and Control

INS/SAR adaptive Kalman filtering algorithm based on credibility evaluation of SAR image matching results

  • ZHAO Yao ,
  • XIONG Zhi ,
  • TIAN Shiwei ,
  • LIU Jianye ,
  • CUI Yuchen
Expand
  • 1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    2. College of Communications Engineering, Army Engineering University, Nanjing 210007, China

Received date: 2018-12-13

  Revised date: 2019-02-12

  Online published: 2019-04-11

Supported by

National Natural Science Foundation of China (61673208, 61601511, 61703208, 61873125, 61533008, 61533009); Advanced Research Project of the Equipment Development(30102080101); Natural Science Fund of Jiangsu Province (BK20181291,BK20170815, BK20170767); the Fundamental Research Funds for the Central Universities(NP2018108,NZ2019007); Foundation of Jiangsu Key Laboratory "Internet of Things and Control Technologies" & the Priority Academic Program Development of Jiangsu Higher Education Institutions

Abstract

In Inertial Navigation System (INS)/Synthetic Aperture Radar (SAR) integrated navigation system, SAR image is susceptible to speckle noise. The accuracy of image matching has significant impact on the accuracy of the whole navigation system. It is especially important to accurately analyze the error characteristics in the SAR image matching process and to exploit the effective image matching information to assist the INS for integrated positioning. In response to the problems above, based on the weighted Hausdorff distance matching algorithm, the factors affecting the matching accuracy of SAR images are analyzed. Meanwhile, a set of criteria for credibility evaluation of matching results based on fuzzy reasoning is proposed, integrating the effective matching information with INS after credibility screening. Moreover, the variation of the matching error within a reasonable range will cause the statistical characteristics of the measurement noise to change, leading to the degradation of Kalman filtering accuracy. To address this problem, the improved Sage-Husa adaptive filtering method is adopted to dynamically adjust the measurement noise variance matrix closer to the current state of the system. The simulation verification platform is established to verify the proposed algorithm. The results indicate that the algorithm can effectively screen out the reliable image matching results within a reasonable range of matching error. Compared with the conventional Kalman filtering algorithm, the positioning accuracy of the INS/SAR integrated navigation system in the horizontal direction is significantly improved.

Cite this article

ZHAO Yao , XIONG Zhi , TIAN Shiwei , LIU Jianye , CUI Yuchen . INS/SAR adaptive Kalman filtering algorithm based on credibility evaluation of SAR image matching results[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(8) : 322850 -322850 . DOI: 10.7527/S1000-6893.2019.22850

References

[1] BAO X Q, BONTEMPS A, GRONDEL S, et al. Design and fabrication of insect-inspired composite wings for MAV application using MEMS technology[J]. Journal of Micromechanics & Microengineering, 2011, 21(12):1316-1317.
[2] ZHAO H, XIONG Z, SHI L J, et al. A robust filtering algorithm for integrated navigation system of aerospace vehicle in launch inertial coordinate[J]. Aerospace Science and Technology, 2016, 58:629-640.
[3] XING L, XIONG Z, LIU J Y, et al. Offline calibration for MEMS gyroscope G-sensitivity error coefficients based on the newton iteration and least square methods[J]. Journal of Navigation, 2018, 71(2):352-370.
[4] 刘中杰, 曹云峰,庄丽葵,等. 基于控制线方法的机载SAR和可见光图像匹配应用研究[J]. 航空学报, 2013, 34(9):2194-2201. LIU Z J, CAO Y F, ZHUANG L K, et al. Applied research on airborne SAR and optical image registraction based on control line method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2194-2201(in Chinese).
[5] 熊智, 冷雪飞,刘建业. 基于北斗双星定位辅助的SAR/INS组合导航系统研究[J]. 宇航学报, 2007, 28(1):88-93. XIONG Z, LENG X F, LIU J Y. Research of SAR/INS integrated navigation system aided by BeiDou double star position[J]. Journal of Astronautics, 2007, 28(1):88-93(in Chinese).
[6] VḠ-UR S, ARIKAN O, CAFER G A. SAR image reconstruction by expectation maximization based matching pursuit[J]. Digital Signal Processing, 2015, 37(1):75-84.
[7] XI R B, WANG Z M, XIE M H, et al. A non-local vectorial total variational model for multichannel SAR image speckle suppression[J]. Chinese Journal of Aeronautics, 2015, 28(3):770-779.
[8] LI D P. A novel method for multi-angle SAR image matching[J]. Chinese Journal of Aeronautics, 2015, 28(1):240-249.
[9] 陈天泽, 李燕. 一种高性能SAR图像边缘点特征匹配方法[J]. 自动化学报, 2013, 39(12):2051-2063. CHEN T Z, LI Y.A high performance edge point feature match method of SAR images[J]. Acta Automatica Sinica, 2013, 39(12):2051-2063(in Chinese).
[10] 许允喜, 陈方. 基于CenSurE特征的SAR/INS组合导航景象匹配算法[J]. 控制与决策, 2011,26(8):1175-1180, 1186. XU Y X, CHEN F.Scene matching algorithm based on CenSurE for SAR/INS integrated navigation system[J]. Control and Decision, 2011, 26(8):1175-1180, 1186(in Chinese).
[11] 王峰, 尤红建,傅兴玉,等. 应用于多源SAR图像匹配的级联SIFT算法[J]. 电子学报, 2016, 44(3):548-554. WANG F, YOU H J, FU X Y, et al. Cascade SIFTmatching method for multi-source SAR images[J]. Acta Electronica Sinica, 2016, 44(3):548-554(in Chinese).
[12] 于秋则, 程辉,柳健,等. 基于改进Hausdorff测度和遗传算法的SAR图像与光学图像匹配[J]. 宇航学报, 2006(1):130-134. YU Q Z, CHENG H, LIU J, et al. Matching SAR image to optical image using modified Hausdorff distance and genetic algorithms[J]. Journal of Astronautics, 2006(1):130-134(in Chinese).
[13] 阮小丽, 陈庆虎,邱益鸣,等. 基于不变因子的SIFT误匹配点剔除及图像检索[J]. 红外技术, 2015, 37(7):560-565. RUAN X L, CHEN Q H, QIU Y M,et al. Excluding SIFT mismatching points based on the invariant factors and image retrieval[J]. Infrared Technology, 2015, 37(7):560-565(in Chinese).
[14] 刘佳, 傅卫平,王雯,等. 基于改进SIFT算法的图像匹配[J]. 仪器仪表学报, 2013, 34(5):1107-1112. LIU J, FU W P, WANG W, et al. Image matching based on improved SIFT algorithm[J]. Chinese Journal of Scientific Instrument, 2013, 34(5):1107-1112(in Chinese).
[15] BATUR A, TURSUN G, MAMUT M, et al. Uyghur printed document image retrieval based on SIFT features[J]. Procedia Computer Science, 2017, 107:737-742.
[16] 冷雪飞, 刘建业,熊智,等. 加权Hausdorff距离算法在SAR/INS景象匹配中的应用[J]. 控制与决策, 2006, 21(1):42-45. LENG X F, LIU J Y, XIONG Z, et al. Application ofweighted Hausdorff distance algorithm in SAR/INS scene matching[J]. Control and Decision, 2006, 21(1):42-45(in Chinese).
[17] 曲圣杰, 潘泉,赵春晖,等. 景象匹配辅助导航系统匹配置信度评估方法[J]. 中国惯性技术学报, 2011, 19(6):713-719. QU S J, PAN Q, ZHAO C H, et al. Confidence evaluation method for scene matching aided navigation system[J]. Journal of Chinese Inertial Technology, 2011, 19(6):713-719(in Chinese).
[18] 陈建祥, 桑农. 一种实用的边缘强度互相关匹配可信度分析方法[J]. 宇航学报, 2005, 26(6):722-725. CHEN J X, SANG N. A practical matching confidence analysis technique based on neural networks for normalized edge magnitude cross correlation[J]. Journal of Astronautics, 2005, 26(6):722-725(in Chinese).
[19] 朱占龙, 单友东,杨翼,等. 基于新息正交性自适应滤波的惯性/地磁组合导航方法[J]. 中国惯性技术学报, 2015, 23(1):66-70. ZHU Z L, SHAN Y D, YANG Y, et al.INS/GNS integrated method based on innovation orthogonality adaptive Kalman filter[J]. Journal of Chinese Inertial Technology, 2015, 23(1):66-70(in Chinese).
[20] 薛丽, 高社生,胡高歌. 自适应Sage-Husa粒子滤波及其在组合导航中的应用[J]. 中国惯性技术学报, 2013, 21(1):84-88. XUE L, GAO S S, HU G G.Adaptive Sage-Husa particle filtering and its application in integrated navigation[J]. Journal of Chinese Inertial Technology, 2013, 21(1):84-88(in Chinese).
[21] 李刚, 赵德阳,解瑞春,等. 基于改进的Sage-Husa自适应扩展卡尔曼滤波的车辆状态估计[J]. 汽车工程, 2015, 37(12):1426-1432. LI G, ZHAO D Y, XIE R C, et al.Vehicle state estimation based on improved Sage-Husa adaptive extended Kalman filtering[J]. Automotive Engineering, 2015, 37(12):1426-1432(in Chinese).
[22] XIA L L, ZHAO Y, MA W J, et al. MIMUs/GPS information fusion:Normal cloud model based fuzzy adaptive filtering[C]//2018 Chinese Control And Decision Conference (CCDC). Piscataway, NJ:IEEE Press, 2018:4076-4081.
[23] RODRIGUEZ R M, BEDREGAL B, BUSTINCE H, et al. A position and perspective analysis of hesitant fuzzy sets on information fusion in decision making. Towards high quality progress[J]. Information Fusion, 2016, 29:89-97.
[24] 张倩. SAR图像质量评估及其目标识别应用[D]. 合肥:中国科学技术大学, 2011:23-28. ZHANG Q.Quality assessment and target recognition in SAR images[D]. Hefei:University of Science and Technology of China, 2011:23-28(in Chinese).
[25] 刘建业, 曾庆化,赵伟,等. 导航系统原理与应用[M]. 西安:西北工业大学出版社, 2010:339-346. LIU J Y, ZENG Q H, ZHAO W, et al.Theory and application of navigation system[M]. Xi'an:Northwestern Polytechnical University Press, 2010:339-346(in Chinese).
Outlines

/