Electronics and Electrical Engineering and Control

Guidance and control for return process of vertical takeoff vertical landing reusable launching vehicle

  • WEI Changzhu ,
  • JU Xiaozhe ,
  • XU Dafu ,
  • WU Rong ,
  • CUI Naigang
Expand
  • 1. Department of Astronautics Engineering, Harbin Institute of Technology, Harbin 150001, China;
    2. Aerospace System Engineering Shanghai, Shanghai 201108, China

Received date: 2018-11-09

  Revised date: 2018-12-12

  Online published: 2019-02-26

Supported by

National Natural Science Foundation of China(61403100)

Abstract

The guidance and control of vertical takeoff vertical landing reusable launch vehicle face multiple constraints, large nonlinearity, and high dynamics during its return process. To overcome these difficulties, schemes of guidance and control adapted to variable characteristics and demands of every flight phase are designed based on the use and improvements of existing algorithms. Firstly, the features of the whole flight profile during the return process are analyzed and a dynamic model is developed. An initial plan is then brought up with the employment of typical guidance and control methods and its shortcomings are analyzed in detail. Improvements are made correspondingly including designing new iterative guidance with adaptive target-updating on the foundation of the estimated remaining working time and geometry relationship and establishing the adaptive guidance method for the final two flight phases with multi-constraints and an active disturbance rejection controller, leading to the formation of a new guidance and control scheme with strong anti-disturbance and adaptability. Finally, the results of mathematical simulation under small disturbances and large disturbances demonstrate the effectiveness of the two proposed schemes as well as strong anti-disturbance and robustness of the improved scheme.

Cite this article

WEI Changzhu , JU Xiaozhe , XU Dafu , WU Rong , CUI Naigang . Guidance and control for return process of vertical takeoff vertical landing reusable launching vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(7) : 322782 -322782 . DOI: 10.7527/S1000-6893.2019.22782

References

[1] 崔乃刚, 吴荣, 韦常柱, 等. 垂直起降可重复使用运载器发展现状与关键技术分析[J]. 宇航总体技术, 2018, 2(2):27-42. CUI N G, WU R, WEI C Z, et al. Development and key technologies of vertical takeoff vertical landing reusable launch vehicle[J]. Aerospace Systems Engineering Technology, 2018, 2(2):27-42(in Chinese).
[2] 徐大富, 张哲, 吴克, 等. 垂直起降重复使用运载火箭发展趋势与关键技术研究进展[J]. 科学通报, 2016, 61(32):3453-3463. XU D F, ZHANG Z, WU K, et al. Recent progress on development trend and key technologies of vertical take-off vertical landing reusable launch vehicle[J]. Chinese Science Bulletin, 2016, 61(32):3453-3463(in Chinese).
[3] HE S, LEE C H. Gravity-turn-assisted optimal guidance law[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(1):1-13.
[4] DANCHICK R. Connecting gravity turn guidance dynamics to near planar missile motion geometry[J]. IET Radar Sonar & Navigation, 2016, 10(2):278-284.
[5] BHATTACHARYA S, BLUNCK H, KJARGAARD M B, et al. Robust and energy-efficient trajectory tracking for mobile devices[J]. IEEE Transactions on Mobile Computing, 2015, 14(2):430-443.
[6] CABECINHAS D, CUNHA R, SILVESTRE C. A nonlinear quadrotor trajectory tracking controller with disturbance rejection[J]. Control Engineering Practice, 2014, 26(1):1-10.
[7] ELMOKADEM T, ZRIBI M, YOUCEF-TOUMI K. Trajectory tracking sliding mode control of underactuated AUVs[J]. Nonlinear Dynamics, 2016, 84(2):1079-1091.
[8] WU Y, SUN J, YU Y. Trajectory tracking control of a quadrotor UAV under external disturbances based on linear ADRC[C]//Chinese Association of Automation, 2017:13-18.
[9] WIBBEN D R, FURFARO R. Terminal guidance for lunar landing and retargeting using a hybrid control strategy[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(5):1168-1172.
[10] LU P. Propellant-optimal powered descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(4):813-826.
[11] SONG E J, CHO S, ROH W R. A comparison of iterative explicit guidance algorithms for space launch vehicles[J]. Advances in Space Research, 2015, 55(1):463-476.
[12] CHANDLER D C, SMITH I E. Development of the iterative guidance mode with its application to various vehicles and missions[J]. Journal of Spacecraft & Rockets, 1966, 4(7):898-903.
[13] JACOBSON R, POWERS W. Iterative explicit guidance for low thrust spacecraft[C]//AIAA/AAS Aslrodynamics Conference. Reston, VA:AIAA, 1972.
[14] 李伟. 基于精确控制解的运载火箭迭代制导自适应性分析研究[D]. 哈尔滨:哈尔滨工业大学, 2012:30-50. LI W. Research and analysis on iterative guidance self-adaptability of vehicle based on precise control of solution[D]. Harbin:Harbin Institute of Technology, 2012:30-50(in Chinese).
[15] 贾沛然, 陈克俊, 何力. 远程火箭弹道学[M]. 长沙:国防科技大学出版社, 1993:30-88. JIA P R, CHEN K J, HE L. Long-range rocket ballistics[M]. Changsha:National University of Defence Technology Publishing Company, 1993:30-88(in Chinese).
[16] 刘大卫, 夏群利, 崔莹莹, 等. 具有终端位置和角度约束的广义弹道成型制导律[J]. 北京理工大学学报, 2011, 31(12):1408-1413. LIU D W, XIA Q L, CUI Y Y, et al. Generalized trajectory shaping guidance law with both impact position and angle constraints[J]. Transactions of Beijing institute of Technology, 2011, 31(12):1408-1413(in Chinese).
[17] 熊少锋, 王卫红, 王森. 带攻击角度约束的非奇异快速终端滑模制导律[J]. 控制理论与应用, 2014, 31(3):269-278. XIONG S F, WANG W H, WANG S. Nonsingular fast terminal sliding-mode guidance with intercept angle constraint[J]. Control Theory & Applications, 2014, 31(3):269-278(in Chinese).
[18] SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A. Guidance and control of missile interceptor using second-order sliding modes[J]. IEEE Transactions on Aerospace & Electronic Systems, 2009, 45(1):110-124.
[19] LI Z, SUN W, ZHENG Z. Control of terminal engagement geometry using variable structure guidance law with impact angular constraint[C]//International Symposium on Systems and Control in Aerospace and Astronautics, 2009:1-4.
[20] 张旭, 雷虎民, 李炯, 等. 变论域模糊自适应滑模有限时间收敛制导律[J]. 国防科技大学学报, 2015, 37(2):149-155. ZHANG X, LEI H M, LI J, et al. Variable universe fuzzy adaptive sliding mode guidance law with finite time convergence[J]. Journal of National University of Defense Technology, 2015, 37(2):149-155(in Chinese).
[21] 张洪华, 关轶峰, 黄翔宇, 等. 嫦娥三号着陆器动力下降的制导导航与控制[J]. 中国科学:技术科学, 2014, 44(4):377-384. ZHANG H H, GUAN Y F, HUANG X Y, et al. Guidance navigation and control for Chang'E-3 powered descent[J]. Scientia Sinica Technologica, 2014, 44(4):377-384(in Chinese).
[22] 王劲博, 崔乃刚, 郭继峰, 等. 火箭返回着陆问题高精度快速轨迹优化算法[J]. 控制理论与应用, 2018, 35(3):389-398. WANG J B, CUI N G, GUO J F, et al. High precision rapid trajectory optimization algorithm for launch vehicle landing[J]. Control Theory & Applications, 2018, 35(3):389-398(in Chinese).
[23] WANG J B, CUI N G. A pseudospectral-convex optimization algorithm for rocket landing guidance[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2018.
[24] ZHANG L, WEI C, JING L, et al. Fixed-time sliding mode attitude tracking control for a submarine-launched missile with multiple disturbances[J]. Nonlinear Dynamics, 2018, 40(9):2355-2362.
[25] YU Y, WANG H, LI N, et al. Finite-time decoupling direct control for hypersonic reentry vehicle with multiple disturbances via second-order ADRC[C]//2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway, NJ:IEEE Press, 2017:2722-2727.
[26] 钱默抒, 熊克, 王海洋. 重复使用运载火箭精确回收滑模动态面控制[J]. 宇航学报, 2018, 39(8):879-888. QIAN M S, XIONG K, WANG H Y. Sliding mode dynamic surface control in precise recovery phase for reusable launch vehicle[J]. Journal of Astronautics, 2018, 39(8):879-888(in Chinese).
[27] 陈世年. 控制系统设计[M]. 北京:宇航出版社, 1996:100-300. CHEN S N. The design of control system[M]. Beijing:The Astrionics Press, 1996:100-300(in Chinese).
[28] 茹家欣. 液体运载火箭的一种迭代制导方法[J]. 中国科学:技术科学, 2009, 39(4):696-706. RU J X. An iterative guidance method for liquid carrier rocket[J]. Scientia Sinica Technologica, 2009, 39(4):696-706(in Chinese).
[29] XIONG S, WANG W, LIU X, et al. Guidance law against maneuvering targets with intercept angle constraint[J]. ISA Transactions, 2014, 53(4):1332-1342.
[30] HE S, LIN D. Sliding mode-based continuous guidance law with terminal angle constraint[J]. Aeronautical Journal, 2016, 120(1229):1175-1195.
[31] YANG L, YANG J. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust & Nonlinear Control, 2011, 21(16):1865-1879.
[32] WU R, GUAN Y, WEI C, et al. Fixed-time disturbance observer based nonsingular fast terminal sliding mode guidance with impact angle constraint[C]//Proceedings of the 2018 IEEE/CSAA Guidance, Navigation and Control Conference. Piscataway, NJ:IEEE Press, 2018:1908-1913.
[33] WU R, WEI C, YANG F, et al. FxTDO-based non-singular terminal sliding mode control for second-order uncertain systems[J]. IET Control Theory and Applications, 2018, 12(18):2459-2467.
[34] 杜昕. 探月返回跳跃式再入轨迹规划与制导[D]. 长沙:国防科技大学, 2015:25-60. DU X. Skip reentry trajectory planning and guidance for lunar-return vehicle[D]. Changsha:National University of Defense Technology, 2015:25-60(in Chinese).
[35] 李茂登. 月球软着陆自主导航、制导与控制问题研究[D]. 哈尔滨:哈尔滨工业大学, 2011:122-138. LI M D. Study the guidance, autonomous navigation and control of lunar soft landing[D]. Harbin:Harbin Institute of Technology, 2011:122-138(in Chinese).
[36] GUO B Z, ZHAO Z L. Active disturbance rejection control for nonlinear systems:An introduction[M]. New York:John Wileyaeson, 2016:1-53.
[37] 林德福, 王辉. 战术导弹自动驾驶仪设计与制导律分析[M]. 北京:北京理工大学出版社, 2012:12-97. LIN D F, WANG H. Autopilot design and guidance law analysis for tactical missiles[M]. Beijing:Beijing Institute of Technology Press, 2012:12-97(in Chinese).
[38] 韩京清.自抗扰控制技术[J]. 前沿科学, 2007, 1(1):24-31. HAN J Q. Auto disturbances rejection control technique[J]. Frontier Science, 2007, 1(1):24-31(in Chinese).
[39] 崔乃刚, 张亮, 韦常柱, 等. 可重复使用运载器大姿态机动自抗扰控制[J]. 中国惯性技术学报, 2017, 25(3):387-394. CUI N G, ZHANG L, WEI C Z, et al. Active disturbance rejection control for reusable launch vehicle with large attitude maneuver[J]. Journal of Chinese Inertial Technology, 2017, 25(3):387-394(in Chinese).
Outlines

/