Electronics and Electrical Engineering and Control

Optimal path tracking control of carrier-based aircraft on the deck based on RHC

  • LIU Jie ,
  • HAN Wei ,
  • XU Weiguo ,
  • LIU Chun ,
  • YUAN Peilong ,
  • CHEN Zhigang ,
  • PENG Haijun
Expand
  • 1. Navy Aviation University, Yantai 264001, China;
    2. Army Aviation Institute, Beijing 101121, China;
    3. 650 Aircraft Design Institute of AVIC Hongdu, Nanchang 330024, China;
    4. China Aerodynamics Research & Development Center, Mianyang 621000, China;
    5. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China

Received date: 2018-12-10

  Revised date: 2018-12-27

  Online published: 2019-01-18

Abstract

In this paper, the path tracking problems of single aircraft, towed system without drawbar, and towed system with drawbar were studied. Firstly, the path tracking problems of the three systems were transformed into optimal control problems, and acontinuous nonlinear path tracking model was established. Then, based on the third generation function, afull state symplectic pseudospectral method with a wider range of applicability was proposed. Combined with the theory of Receding Horizon Control(RHC), an online tracking optimal control method was proposed, and the proposed method was proved to be a symplectic preserving algorithm. Based on the proposed online tracking algorithm, the path tracking problem of the single aircraft, towed system without drawbar, and towed system with drawbar in the presence of initial deviations and continuous disturbances of were studied respectively. Compared with the BackwardSweep method, the results show that the proposed tracking method can effectively solve the tracking problem with control constraints and state constraints, and it's of higher tracking accuracy and computation efficiency, fully meeting the requirements of real-time tracking. Finally, the tracking characteristics of these three different modes were studied from the perspective of initial deviation and continuous external disturbance.

Cite this article

LIU Jie , HAN Wei , XU Weiguo , LIU Chun , YUAN Peilong , CHEN Zhigang , PENG Haijun . Optimal path tracking control of carrier-based aircraft on the deck based on RHC[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(8) : 322842 -322842 . DOI: 10.7527/S1000-6893.2019.22842

References

[1] HUANG D, ZHAI J. Trajectory tracking control of wheeled mobile robots based on disturbance observer[C]//2015 Chinese Automation Congress (CAC). Piscataway, NJ:IEEE Press, 2015:1761-1765.
[2] ZDEŠAR A, ŠKRJANC I, KLANČAR G. Visual trajectory-tracking model-based control for mobile robots[J]. International Journal of Advanced Robotic Systems, 2013, 10(9):323.
[3] LEE S M, KIM H, LEE S, et al. Nash equilibrium-based geometric pattern formation control for nonholonomic mobile robots[J]. Advances in Robotics Research, 2014, 1(1):41-59.
[4] SOSA-CERVANTES C Y, SILVA-ORTIGOZA R, MARQUEZ-SANCHEZ C, et al. Trajectory tracking task in wheeled mobile robots:A Review[C]//2014 International Conference on Mechatronics, Electronics and Automotive Engineering. Piscataway, NJ:IEEE Press, 2014:110-115.
[5] THOMAS H, RINGDAHL O. Follow the past-a path tracking algorithm for autonomous forest vehicles[J]. International Journal of Vehicle Autonomous Systems, 2006, 4(2/3/4):216.
[6] FLETCHER L, TELLER S, OLSON E, et al. The DARPA urban challenge:Autonomous vehicles in city traffic[M]. Berlin:Springer Publishing Company, 2009.
[7] SEBASTIAN T, MIKE M, HENDRIK D, et al. Stanley:The robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9):661-692.
[8] HOFFMANN G M, TOMLIN C J, MONTEMERLO M, et al. Autonomous automobile trajectory tracking for off-road driving:Controller Design, Experimental Validation and Racing[C]//2007 American Control Conference. Piscataway, NJ:IEEE Press, 2007:2296-2301.
[9] 李林琛,蒋小平. 基于PID控制的移动机器人路径跟踪[J]. 激光杂志, 2016, 37(2):110-112. LI L C, JIANG X P. Path tracking of mobile robot based on PID control[J]. Laser Journal, 2016, 37(2):110-112(in Chinese).
[10] 冯剑,张文安,倪洪杰,等. 轮式移动机器人轨迹跟踪的PID控制方法[J]. 信息与控制, 2017,46(4):385-393. FENG J, ZHANG W A, NI H J, et al. Trajectory tracking control of wheeled mobile robots using PID control method[J]. Information & Control, 2017, 46(4):385-393(in Chinese).
[11] PAN Y, LI X, YU H. Efficient PID tracking control of robotic manipulators driven by compliant actuators[J]. IEEE Transactions on Control Systems Technology, 2018,27(2):915-922.
[12] ZHU R, SUN D, ZHOU Z. Integrated design of trajectory planning and control for micro air vehicles[J]. Mechatronics, 2007, 17(4):245-253.
[13] NORMEY-RICO J E, ISMAEL A, JUAN G O, et al. Mobile robot path tracking using a robust PID controller[J]. Control Engineering Practice, 2001, 9(11):1209-1214.
[14] ROSSOMANDO F G, SORIA C, CARELLI R. Sliding mode neuro adaptive control in trajectory tracking for mobile robots[J]. Journal of Intelligent & Robotic Systems, 2014, 74(3-4):931-944.
[15] MATRAJI I, AL-DURRA A, HARYONO A, et al. Trajectory tracking control of skid-steered mobile robot based on adaptive second order sliding mode control[J]. Control Engineering Practice, 2018, 72:167-176.
[16] MUÑOZ F, ESPINOZA E S, GONZÁLEZ-HERNÁNDEZ I, et al. Robust trajectory tracking for unmanned aircraft systems using a nonsingular terminal modified super-twisting sliding mode controller[J]. Journal of Intelligent & Robotic Systems, 2018(1):1-18.
[17] ASIF M, MEMON A Y, KHAN M J. Output feedback control for trajectory tracking of wheeled mobile robot[J]. Intelligent Automation & Soft Computing,2015, 22(1):75-87.
[18] ELMOKADEM T, ZRIBI M, YOUCEF-TOUMI K. Trajectory tracking sliding mode control of underactuated AUVs[J]. Nonlinear Dynamics, 2016, 84(2):1079-1091.
[19] YANG J M, KIM J H. Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots[J]. IEEE Transactions on Robotics & Automation 1999, 15(3):578-587.
[20] JIN Y Q, LIU X D, QIU W, et al. Time-varying sliding mode controls in rigid spacecraft attitude tracking[J]. Chinese Journal of Aeronautics, 2008, 21(4):68-76.
[21] 丛炳龙,刘向东,陈振. 刚体航天器姿态跟踪系统的自适应积分滑模控制[J]. 航空学报, 2013, 34(3):620-628. CONG B L, LIU X D, CHEN Z. Adaptive integral sliding mode control for rigid spacecraft attitude tracking[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):620-628(in Chinese).
[22] OUYANG P R, ACOB J, PANO V. PD with sliding mode control for trajectory tracking of robotic system[J]. Robotics & Computer Integrated Manufacturing, 2014, 30(2):189-200.
[23] BOUKATTAYA M, MEZGHANI N, DAMAK T. Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems[J]. ISA Transactions, 2018, 77:1-19.
[24] AJJANAROMVAT N, PARNICHKUN M. Trajectory tracking using online learning LQR with adaptive learning control of a leg-exoskeleton for disorder gait rehabilitation[J]. Mechatronics, 2018, 51:85-96.
[25] SNIDER J M. Automatic steering methods for autonomous automobile path tracking[R]. Pittsburgh, PA:Robotics Institute. Tech. Rep. CMU-RITR-09-08,2009.
[26] TAGNE G, TALJ R, CHARARA A. Design and comparison of robust nonlinear controllers for the lateral dynamics of intelligent vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(3):796-809.
[27] FALCONE P, TUFO M, BORRELLI F, et al. A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems[C]//200746th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2007:2980-2985.
[28] BORRELLI F, FALCONE P, KEVICZKY T, et al. MPC-based approach to active steering for autonomous vehicle systems[J]. International Journal of Vehicle Autonomous Systems, 2005, 3(2/3/4):265.
[29] FALCONE P, BORRELLI F, ASGARI J, et al. Predictive active steering control for autonomous vehicle systems[J]. IEEE Transactions on Control Systems Technology, 2007, 15(3):566-580.
[30] KÜHNE F, FETTER W, JOÃO L, et al. Model predictive control of a mobile robot using linearization[C]//Proceedings of Mechatronics & Robotics, 2004:525-530.
[31] BAHADORIAN M, EATON R, HESKETH T, et al. Robust time-varying model predictive control with application to mobile robot unmanned path tracking[J]. IFAC Proceedings Volumes, 2014, 47(3):4849-4854.
[32] BAHADORIAN M, SAVKOVIC B, EATON R, et al. Robust model predictive control for automated trajectory tracking of an unmanned ground vehicle[C]//2012 American Control Conference. Piscataway,NJ:IEEE Press, 2012:4251-4256.
[33] GUTJAHR B, GRÖLL L, WERLING M. Lateral vehicle trajectory optimization using constrained linear time-varying MPC[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6):1586-1595.
[34] PLESSEN M, BEMPORAD A. Reference trajectory planning under constraints and path tracking using linear time-varying model predictive control for agricultural machines[J]. Biosystems Engineering, 2017, 153:28-41.
[35] LI Z J, DENG J, LU R Q, et al. Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 46(6):740-749.
[36] ALI Z A, WANG D, SAFWAN M, et al. Trajectory tracking of a nonholonomic wheeleed mobile robot using hybrid controller[J]. International Journal of Modeling & Optimization, 2016, 6(3):136-141.
[37] 张万枝,白文静,吕钊钦,等. 线性时变模型预测控制器提高农业车辆导航路径自动跟踪精度[J]. 农业工程学报, 2017(13):112-119. ZHANG W Z, BAI W J, LYU Z Q, et al. Linear time-varying model predictive controller improving precision of navigation path automatic tracking for agricultural vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017(13):112-119(in Chinese).
[38] HAN Y Q, YAN H S. Adaptive multi-dimensional Taylor network tracking control for SISO uncertain stochastic non-linear systems[J]. IET Control Theory & Applications, 2018, 12(8):1107-1115.
[39] OSTAFEW C J, SCHOELLIG A P, BARFOOT T D, et al. Learning-based nonlinear model predictive control to improve vision-based mobile robot path tracking[J]. Journal of Field Robotics, 2015, 33(1):133-152.
[40] 刘昌鑫,高剑,徐德民. 一种欠驱动AUV模型预测路径跟踪控制方法[J]. 机械科学与技术, 2017(11):19-23. LIU C X, GAO J, XU D M. A model predictive path following control method for underactuated autonomous underwater vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2017(11):19-23(in Chinese).
[41] YANG Y, LIN X, MIAO Z, et al. Predictive control strategy based on extreme learning machine for path-tracking of autonomous mobile robot[J]. Intelligent Automation & Soft Computing, 2015, 21(1):1-19.
[42] CARVALHO A, GAO Y, GRAY A, et al. Predictive control of an autonomous ground vehicle using an iterative linearization approach[C]//16th International IEEE Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE Press, 2013:2335-2340.
[43] FUKAO T. Inverse optimal tracking control of a nonholonomic mobile robot[J]. IEEE Transactions on Robotics & Automation, 2000, 16(5):609-615.
[44] BIN L, YONGSHENG D, KUANGRONG H, et al. Research on mobile robot path tracking based on color vision[C]//Chinese Automation Congress. Piscataway, NJ:IEEE Press, 2015:371-375.
[45] SHIRZADEH M, ASL H J, AMIRKHANI A, et al. Vision-based control of a quadrotor utilizing artificial neural networks for tracking of moving targets[J]. Engineering Applications of Artificial Intelligence, 2017, 58:34-48.
[46] JIANG P, UNBEHAUEN R. Iterative learning neural network control for nonlinear system trajectory tracking[J]. Neurocomputing, 2002, 48(1):141-153.
[47] MORENO-VALENZUELA J, AGUILAR-AVELAR C, PUGA-GUZMÁN S A, et al. Adaptive neural network control for the trajectory tracking of the furuta pendulum[J]. IEEE Transactions on Cybernetics, 2016, 46(12):3439.
[48] 刘芳,王洪娟,黄光伟,等.基于自适应深度网络的无人机目标跟踪算法[J].航空学报, 2019, 40(4):322332. LIU F, WANG H J, HUANG G W, et al. UAV target tracking algorithm based on adaptive depth network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):322332(in Chinese).
[49] GAO M, SONG A G. Design of intelligent controller for mobile robot based on fuzzy logic[J]. Journal of Southeast University(English Edition), 2010, 26(1):62-67.
[50] AMER N H, ZAMZURI H, HUDHA K, et al. Modelling and control strategies in path tracking control for autonomous ground vehicles:A review of state of the art and challenges[J]. Journal of Intelligent & Robotic Systems, 2017, 86(2):1-30.
[51] SORNIOTTI A, BARBER P, PINTO S D. Path tracking for automated driving:A tutorial on control system formulations and ongoing research[M].Automated Driving. Cham:Springer, 2017:71-140.
[52] RUPP A, STOLZ M. Survey on control schemes for automated driving on highways[M].Automated Driving. Cham:Springer, 2017:13-69.
[53] KHALAJI A K, MOOSAVIAN S A A. Robust adaptive controller for a tractor-trailer mobile robot[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3):943-953.
[54] YUE M, HOU X, GAO R, et al. Trajectory tracking control for tractor-trailer vehicles:A coordinated control approach[J]. Nonlinear Dynamics, 2017(3):1061-1074.
[55] 周火凤,马保离,宋丽辉,等. 离轴式带拖车移动机器人的路径跟踪控制[J]. 自动化学报, 2010, 36(9):1272-1278. ZHOU H F, MA B L, SONG L H, et al. Path following control of tractor-trailers with off-axle hitching[J]. Acta Automatica Sinica, 2010, 36(9):1272-1278(in Chinese).
[56] KAYACAN E, RAMON H, SAEYS W. Robust trajectory tracking error model-based predictive control for unmanned ground vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2):806-814.
[57] PAZDERSKI D, KOZLOWSKI K. Control of a unicycle-like robot with three on-axle trailers using transverse function approach[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2012, 60(3):557-579.
[58] MATSUSHITA K, MURAKAMI T. Nonholonomic equivalent disturbance based backward motion control of tractor-trailer with virtual steering[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1):280-287.
[59] KAYACAN E, KAYACAN E, RAMON H, et al. Learning in centralized nonlinear model predictive control:Application to an autonomous tractor-trailer system[J]. IEEE Transactions on Control Systems Technology, 2014, 23(1):197-205.
[60] YUAN J, SUN F, HUANG Y. Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12):7665-7677.
[61] ASTOLFI A, BOLZERN P, LOCATELLI A. Path-tracking of a tractor-trailer vehicle along rectilinear and circular paths:A Lyapunov-based approach[J]. IEEE Transactions on Robotics & Automation, 2004, 20(1):154-160.
[62] 苑晶,黄亚楼,孙凤池. 带拖车移动机器人全局路径跟踪控制[J]. 控制与决策, 2007, 22(10):1119-1124. YUAN J, HUANG Y L, SUN F C. Global path following control of tractor-trailer mobile robot[J]. Control & Decision, 2007, 22(10):1119-1124(in Chinese).
[63] JOHNSTON J S, SWENSON E D. Feasibility study of global-positioning-system-based aircraft-carrier flight-deck persistent monitoring system[J]. Journal of Aircraft, 2010, 47(5):1624-1635.
[64] KARKEE M, STEWARD B L. Study of the open and closed loop characteristics of a tractor and a single axle towed implement system[J]. Journal of Terramechanics, 2010, 47(6):379-393.
[65] LIU J, HAN W, LIU C, et al. A new method for the optimal control problem of path planning for unmanned ground systems[J]. IEEE Access, 2018, 6:33251-33260.
[66] LIU J, HAN W, ZHANG Y, et al. Design of an online nonlinear optimal tracking control method for unmanned ground systems[J]. IEEE Access, 2018, 6:65429-65438.
[67] ARNOLD V I. Mathematical methods of classical mechanics[J]. Advances in Mathematics, 1983, 49(1):106.
[68] HAIRER E, LUBICH C, WANNER G. Geometric numerical integration:Structure-preserving algorithm for ordinary differential equations[M]. New York:Springer, 2006.
Outlines

/