[1] HUANG D, ZHAI J. Trajectory tracking control of wheeled mobile robots based on disturbance observer[C]//2015 Chinese Automation Congress (CAC). Piscataway, NJ:IEEE Press, 2015:1761-1765.
[2] ZDEŠAR A, ŠKRJANC I, KLANČAR G. Visual trajectory-tracking model-based control for mobile robots[J]. International Journal of Advanced Robotic Systems, 2013, 10(9):323.
[3] LEE S M, KIM H, LEE S, et al. Nash equilibrium-based geometric pattern formation control for nonholonomic mobile robots[J]. Advances in Robotics Research, 2014, 1(1):41-59.
[4] SOSA-CERVANTES C Y, SILVA-ORTIGOZA R, MARQUEZ-SANCHEZ C, et al. Trajectory tracking task in wheeled mobile robots:A Review[C]//2014 International Conference on Mechatronics, Electronics and Automotive Engineering. Piscataway, NJ:IEEE Press, 2014:110-115.
[5] THOMAS H, RINGDAHL O. Follow the past-a path tracking algorithm for autonomous forest vehicles[J]. International Journal of Vehicle Autonomous Systems, 2006, 4(2/3/4):216.
[6] FLETCHER L, TELLER S, OLSON E, et al. The DARPA urban challenge:Autonomous vehicles in city traffic[M]. Berlin:Springer Publishing Company, 2009.
[7] SEBASTIAN T, MIKE M, HENDRIK D, et al. Stanley:The robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9):661-692.
[8] HOFFMANN G M, TOMLIN C J, MONTEMERLO M, et al. Autonomous automobile trajectory tracking for off-road driving:Controller Design, Experimental Validation and Racing[C]//2007 American Control Conference. Piscataway, NJ:IEEE Press, 2007:2296-2301.
[9] 李林琛,蒋小平. 基于PID控制的移动机器人路径跟踪[J]. 激光杂志, 2016, 37(2):110-112. LI L C, JIANG X P. Path tracking of mobile robot based on PID control[J]. Laser Journal, 2016, 37(2):110-112(in Chinese).
[10] 冯剑,张文安,倪洪杰,等. 轮式移动机器人轨迹跟踪的PID控制方法[J]. 信息与控制, 2017,46(4):385-393. FENG J, ZHANG W A, NI H J, et al. Trajectory tracking control of wheeled mobile robots using PID control method[J]. Information & Control, 2017, 46(4):385-393(in Chinese).
[11] PAN Y, LI X, YU H. Efficient PID tracking control of robotic manipulators driven by compliant actuators[J]. IEEE Transactions on Control Systems Technology, 2018,27(2):915-922.
[12] ZHU R, SUN D, ZHOU Z. Integrated design of trajectory planning and control for micro air vehicles[J]. Mechatronics, 2007, 17(4):245-253.
[13] NORMEY-RICO J E, ISMAEL A, JUAN G O, et al. Mobile robot path tracking using a robust PID controller[J]. Control Engineering Practice, 2001, 9(11):1209-1214.
[14] ROSSOMANDO F G, SORIA C, CARELLI R. Sliding mode neuro adaptive control in trajectory tracking for mobile robots[J]. Journal of Intelligent & Robotic Systems, 2014, 74(3-4):931-944.
[15] MATRAJI I, AL-DURRA A, HARYONO A, et al. Trajectory tracking control of skid-steered mobile robot based on adaptive second order sliding mode control[J]. Control Engineering Practice, 2018, 72:167-176.
[16] MUÑOZ F, ESPINOZA E S, GONZÁLEZ-HERNÁNDEZ I, et al. Robust trajectory tracking for unmanned aircraft systems using a nonsingular terminal modified super-twisting sliding mode controller[J]. Journal of Intelligent & Robotic Systems, 2018(1):1-18.
[17] ASIF M, MEMON A Y, KHAN M J. Output feedback control for trajectory tracking of wheeled mobile robot[J]. Intelligent Automation & Soft Computing,2015, 22(1):75-87.
[18] ELMOKADEM T, ZRIBI M, YOUCEF-TOUMI K. Trajectory tracking sliding mode control of underactuated AUVs[J]. Nonlinear Dynamics, 2016, 84(2):1079-1091.
[19] YANG J M, KIM J H. Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots[J]. IEEE Transactions on Robotics & Automation 1999, 15(3):578-587.
[20] JIN Y Q, LIU X D, QIU W, et al. Time-varying sliding mode controls in rigid spacecraft attitude tracking[J]. Chinese Journal of Aeronautics, 2008, 21(4):68-76.
[21] 丛炳龙,刘向东,陈振. 刚体航天器姿态跟踪系统的自适应积分滑模控制[J]. 航空学报, 2013, 34(3):620-628. CONG B L, LIU X D, CHEN Z. Adaptive integral sliding mode control for rigid spacecraft attitude tracking[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):620-628(in Chinese).
[22] OUYANG P R, ACOB J, PANO V. PD with sliding mode control for trajectory tracking of robotic system[J]. Robotics & Computer Integrated Manufacturing, 2014, 30(2):189-200.
[23] BOUKATTAYA M, MEZGHANI N, DAMAK T. Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems[J]. ISA Transactions, 2018, 77:1-19.
[24] AJJANAROMVAT N, PARNICHKUN M. Trajectory tracking using online learning LQR with adaptive learning control of a leg-exoskeleton for disorder gait rehabilitation[J]. Mechatronics, 2018, 51:85-96.
[25] SNIDER J M. Automatic steering methods for autonomous automobile path tracking[R]. Pittsburgh, PA:Robotics Institute. Tech. Rep. CMU-RITR-09-08,2009.
[26] TAGNE G, TALJ R, CHARARA A. Design and comparison of robust nonlinear controllers for the lateral dynamics of intelligent vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(3):796-809.
[27] FALCONE P, TUFO M, BORRELLI F, et al. A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems[C]//200746th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2007:2980-2985.
[28] BORRELLI F, FALCONE P, KEVICZKY T, et al. MPC-based approach to active steering for autonomous vehicle systems[J]. International Journal of Vehicle Autonomous Systems, 2005, 3(2/3/4):265.
[29] FALCONE P, BORRELLI F, ASGARI J, et al. Predictive active steering control for autonomous vehicle systems[J]. IEEE Transactions on Control Systems Technology, 2007, 15(3):566-580.
[30] KÜHNE F, FETTER W, JOÃO L, et al. Model predictive control of a mobile robot using linearization[C]//Proceedings of Mechatronics & Robotics, 2004:525-530.
[31] BAHADORIAN M, EATON R, HESKETH T, et al. Robust time-varying model predictive control with application to mobile robot unmanned path tracking[J]. IFAC Proceedings Volumes, 2014, 47(3):4849-4854.
[32] BAHADORIAN M, SAVKOVIC B, EATON R, et al. Robust model predictive control for automated trajectory tracking of an unmanned ground vehicle[C]//2012 American Control Conference. Piscataway,NJ:IEEE Press, 2012:4251-4256.
[33] GUTJAHR B, GRÖLL L, WERLING M. Lateral vehicle trajectory optimization using constrained linear time-varying MPC[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6):1586-1595.
[34] PLESSEN M, BEMPORAD A. Reference trajectory planning under constraints and path tracking using linear time-varying model predictive control for agricultural machines[J]. Biosystems Engineering, 2017, 153:28-41.
[35] LI Z J, DENG J, LU R Q, et al. Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 46(6):740-749.
[36] ALI Z A, WANG D, SAFWAN M, et al. Trajectory tracking of a nonholonomic wheeleed mobile robot using hybrid controller[J]. International Journal of Modeling & Optimization, 2016, 6(3):136-141.
[37] 张万枝,白文静,吕钊钦,等. 线性时变模型预测控制器提高农业车辆导航路径自动跟踪精度[J]. 农业工程学报, 2017(13):112-119. ZHANG W Z, BAI W J, LYU Z Q, et al. Linear time-varying model predictive controller improving precision of navigation path automatic tracking for agricultural vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017(13):112-119(in Chinese).
[38] HAN Y Q, YAN H S. Adaptive multi-dimensional Taylor network tracking control for SISO uncertain stochastic non-linear systems[J]. IET Control Theory & Applications, 2018, 12(8):1107-1115.
[39] OSTAFEW C J, SCHOELLIG A P, BARFOOT T D, et al. Learning-based nonlinear model predictive control to improve vision-based mobile robot path tracking[J]. Journal of Field Robotics, 2015, 33(1):133-152.
[40] 刘昌鑫,高剑,徐德民. 一种欠驱动AUV模型预测路径跟踪控制方法[J]. 机械科学与技术, 2017(11):19-23. LIU C X, GAO J, XU D M. A model predictive path following control method for underactuated autonomous underwater vehicles[J]. Mechanical Science and Technology for Aerospace Engineering, 2017(11):19-23(in Chinese).
[41] YANG Y, LIN X, MIAO Z, et al. Predictive control strategy based on extreme learning machine for path-tracking of autonomous mobile robot[J]. Intelligent Automation & Soft Computing, 2015, 21(1):1-19.
[42] CARVALHO A, GAO Y, GRAY A, et al. Predictive control of an autonomous ground vehicle using an iterative linearization approach[C]//16th International IEEE Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE Press, 2013:2335-2340.
[43] FUKAO T. Inverse optimal tracking control of a nonholonomic mobile robot[J]. IEEE Transactions on Robotics & Automation, 2000, 16(5):609-615.
[44] BIN L, YONGSHENG D, KUANGRONG H, et al. Research on mobile robot path tracking based on color vision[C]//Chinese Automation Congress. Piscataway, NJ:IEEE Press, 2015:371-375.
[45] SHIRZADEH M, ASL H J, AMIRKHANI A, et al. Vision-based control of a quadrotor utilizing artificial neural networks for tracking of moving targets[J]. Engineering Applications of Artificial Intelligence, 2017, 58:34-48.
[46] JIANG P, UNBEHAUEN R. Iterative learning neural network control for nonlinear system trajectory tracking[J]. Neurocomputing, 2002, 48(1):141-153.
[47] MORENO-VALENZUELA J, AGUILAR-AVELAR C, PUGA-GUZMÁN S A, et al. Adaptive neural network control for the trajectory tracking of the furuta pendulum[J]. IEEE Transactions on Cybernetics, 2016, 46(12):3439.
[48] 刘芳,王洪娟,黄光伟,等.基于自适应深度网络的无人机目标跟踪算法[J].航空学报, 2019, 40(4):322332. LIU F, WANG H J, HUANG G W, et al. UAV target tracking algorithm based on adaptive depth network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):322332(in Chinese).
[49] GAO M, SONG A G. Design of intelligent controller for mobile robot based on fuzzy logic[J]. Journal of Southeast University(English Edition), 2010, 26(1):62-67.
[50] AMER N H, ZAMZURI H, HUDHA K, et al. Modelling and control strategies in path tracking control for autonomous ground vehicles:A review of state of the art and challenges[J]. Journal of Intelligent & Robotic Systems, 2017, 86(2):1-30.
[51] SORNIOTTI A, BARBER P, PINTO S D. Path tracking for automated driving:A tutorial on control system formulations and ongoing research[M].Automated Driving. Cham:Springer, 2017:71-140.
[52] RUPP A, STOLZ M. Survey on control schemes for automated driving on highways[M].Automated Driving. Cham:Springer, 2017:13-69.
[53] KHALAJI A K, MOOSAVIAN S A A. Robust adaptive controller for a tractor-trailer mobile robot[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3):943-953.
[54] YUE M, HOU X, GAO R, et al. Trajectory tracking control for tractor-trailer vehicles:A coordinated control approach[J]. Nonlinear Dynamics, 2017(3):1061-1074.
[55] 周火凤,马保离,宋丽辉,等. 离轴式带拖车移动机器人的路径跟踪控制[J]. 自动化学报, 2010, 36(9):1272-1278. ZHOU H F, MA B L, SONG L H, et al. Path following control of tractor-trailers with off-axle hitching[J]. Acta Automatica Sinica, 2010, 36(9):1272-1278(in Chinese).
[56] KAYACAN E, RAMON H, SAEYS W. Robust trajectory tracking error model-based predictive control for unmanned ground vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2):806-814.
[57] PAZDERSKI D, KOZLOWSKI K. Control of a unicycle-like robot with three on-axle trailers using transverse function approach[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2012, 60(3):557-579.
[58] MATSUSHITA K, MURAKAMI T. Nonholonomic equivalent disturbance based backward motion control of tractor-trailer with virtual steering[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1):280-287.
[59] KAYACAN E, KAYACAN E, RAMON H, et al. Learning in centralized nonlinear model predictive control:Application to an autonomous tractor-trailer system[J]. IEEE Transactions on Control Systems Technology, 2014, 23(1):197-205.
[60] YUAN J, SUN F, HUANG Y. Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12):7665-7677.
[61] ASTOLFI A, BOLZERN P, LOCATELLI A. Path-tracking of a tractor-trailer vehicle along rectilinear and circular paths:A Lyapunov-based approach[J]. IEEE Transactions on Robotics & Automation, 2004, 20(1):154-160.
[62] 苑晶,黄亚楼,孙凤池. 带拖车移动机器人全局路径跟踪控制[J]. 控制与决策, 2007, 22(10):1119-1124. YUAN J, HUANG Y L, SUN F C. Global path following control of tractor-trailer mobile robot[J]. Control & Decision, 2007, 22(10):1119-1124(in Chinese).
[63] JOHNSTON J S, SWENSON E D. Feasibility study of global-positioning-system-based aircraft-carrier flight-deck persistent monitoring system[J]. Journal of Aircraft, 2010, 47(5):1624-1635.
[64] KARKEE M, STEWARD B L. Study of the open and closed loop characteristics of a tractor and a single axle towed implement system[J]. Journal of Terramechanics, 2010, 47(6):379-393.
[65] LIU J, HAN W, LIU C, et al. A new method for the optimal control problem of path planning for unmanned ground systems[J]. IEEE Access, 2018, 6:33251-33260.
[66] LIU J, HAN W, ZHANG Y, et al. Design of an online nonlinear optimal tracking control method for unmanned ground systems[J]. IEEE Access, 2018, 6:65429-65438.
[67] ARNOLD V I. Mathematical methods of classical mechanics[J]. Advances in Mathematics, 1983, 49(1):106.
[68] HAIRER E, LUBICH C, WANNER G. Geometric numerical integration:Structure-preserving algorithm for ordinary differential equations[M]. New York:Springer, 2006.