Electronics and Electrical Engineering and Control

High accuracy physical time synchronization method based on two-way comparison

  • YU Xuehui ,
  • WANG Dun ,
  • LI Zhou ,
  • ZHAO Hongjuan
Expand
  • Space Star Technology Co., Ltd., Beijing 100194, China

Received date: 2018-07-02

  Revised date: 2018-11-09

  Online published: 2019-01-17

Supported by

National Key R&D Program of China (2017YFB0503300);Equipment Pre-research Project (41418070201)

Abstract

A closed-loop physical high accuracy time synchronization method for the future orbit-application of satellite is proposed. Differences and advantages of the proposed system are compared with other time synchronization methods. The basic time synchronization model and error propagation model for remote systems are built. Based on the two-way range measurement and time transfer technology, the principle for obtaining high accuracy clock bias is analyzed. The dependence between time and frequency domain parameters for clock adjustment loop is given. A high accuracy time synchronization system for ground experiment is constructed. The clock bias measurement precision under open-loop non-clock adjustment status, time synchronization accuracy under closed-loop clock adjustment status, and long term time synchronization monitoring results are given. The experiment results show that the accuracy of proposed time synchronization method is superior to 1 ns, providing a new method for studying high accuracy time synchronization.

Cite this article

YU Xuehui , WANG Dun , LI Zhou , ZHAO Hongjuan . High accuracy physical time synchronization method based on two-way comparison[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(5) : 322507 -322507 . DOI: 10.7527/S1000-6893.2019.22507

References

[1] DANIEL S, ALESSANDRO G, OLGA K, et al. Distributed earth satellite systems:What is needed to move forward[J]. Journal of Aerospace Information Systems, 2017, 14(8):412-438.
[2] TOSHIAKI I, TOMONARI S, MICHITO I, et al. Remote synchronization experiments for quasi-zenith satellite system using multiple navigation signals as feedback control[J]. International Journal of Navigation and Observation 2011,doi:10.1155/2001/849814.
[3] FABRIZIO T, ANDREW D, TOSHIAKI I, et al. Proposal for a novel remote synchronization system for the on-board crystal oscillator of the quasi-zenith satellite system[J]. Journal of the Institute of Navigation, 2006, 53(4):219-229.
[4] TOSHIAKI I, MICHITO I, TOMONARI S, et al. Simulation and ground experiments of remote synchronization system for onboard crystal oscillator of quasi-zenith satellite[J]. Journal of the Institute of Navigation, 2006, 53(4):231-235.
[5] KISHIMOTO M, HASE H, MATSUMOTO A, et al. QZSS system design and its performance[C]//Proceedings of the Institute of Navigation National Technical Meeting. San Diego:ION, 2007:405-410.
[6] GIUNTA D, BUSCA G, DELLA T A, et al. Recent developments in time & frequency dissemination systems[C]//Proceedings of the 18th European Frequency and Time Forum, 2004:530-536.
[7] GLENNON E P, GAUTHIER J P, CHOUDHURY M, et al. Synchronization and syntonization of formation flying cubesats using the namuru V3.2 spaceborne GPS receiver[C]//Proceedings of the ION 2013 Pacific PNT Meeting. San Diego:ION, 2013:23-25.
[8] 钟兴旺, 陈豪. 卫星运动对星间双向法时间同步的影响分析与校正[J].中国空间科学技术, 2007, 27(6):54-58. ZHONG X W, CHEN H. Analysis and correction techniques of movement influence on inter-satellite two way time transfer[J]. Chinese Space Science and Technology, 2007, 27(6):54-58(in Chinese).
[9] ZHOU S S, HU X G, LIU L. Applications of two-way satellite time and frequency transfer in the BeiDou navigation satellite system[J]. Science China, 2016, 59(10):109511.
[10] HUANG Y J, TSAO H W. Multiple access interference suppression for TWSTFT applications[J]. IEEE Transaction on Instrumentation and Measurement, 2017, 66(6):1337-1342.
[11] FUJIEDA M, PIESTER D, GOTOH T, et al. Carrier-phase two-way satellite frequency transfer over a very long baseline[J]. Metrologia, 2014, 51(3):253-262.
[12] HARRIS J, WU S, BERTIGER W. GPS time interval and state measurement for PARCS[C]//Proceedings of the IEEE International Frequency Control Symposium. Piscataway, NJ:IEEE Press, 2003:185-190.
[13] ZHOU W, MIAO M, ZHOU H, et al. A novel phase processing approach based on new concept and method[C]//Proceedings of the 22nd European Frequency and Time Forum, 2009:492-495.
[14] BERTIGER W, DUNN C, HARRIS I. Relative time and frequency alignment between two low earth orbiters:GRACE[C]//Proceedings of the 17th European Frequency and Time Forum, 2003:273-279.
[15] KIM J. Simulation study of a low-low satellite-to-satellite tracking mission[D]. Austin:The University of Texas at Austin, 2000.
[16] KIM J. Flight performance analysis of a high accuracy inter-satellite ranging instrument[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Reston, VA:AIAA, 2007.
[17] 佘世刚, 王锴, 周毅, 等. 高精度星间微波测距技术[J]. 宇航学报, 2006, 27(3):85-89. SHE S G, WANG K, ZHOU Y, et al. The technology of high accuracy inter-satellite microwave ranging[J]. Journal of Astronautics, 2006, 27(3):85-89(in Chinese).
[18] TAMARA B, JAKOB F, UNG D K. Characteristics and accuracies of the GRACE inter-satellite pointing[J]. Advances in Space Research, 2012, 50(1):123-125.
[19] 黄波, 胡修林. 北斗2导航卫星星间测距与时间同步技术[J]. 宇航学报, 2011, 32(6):1271-1275. HUANG B, HU X L. Inter-satellite ranging and time synchronization technique for BD2[J]. Journal of Astronautics, 2011,32(6):1271-1275(in Chinese).
[20] GRIGGS E R, KURSINSKI E R, AKOS D M. Characterization of short-term GNSS satellite clock stability[C]//Proceedings of the 46th Annual Precise Time and Time Interval Systems and Applications Meeting, 2014:170-175.
[21] 胡志刚. 北斗卫星导航系统性能评估理论与试验验证[D]. 武汉:武汉大学, 2013. HU Z G. BeiDou navigation satellite system performance assessment theory and experimental verification[D]. Wuhan:Wuhan University, 2013.
[22] 郭海荣. 导航卫星原子钟时频特性分析理论与方法研究[D]. 郑州:解放军信息工程大学, 2006. GUO H R. Study on the analysis theories and algorithms of the time and frequency characterization for atomic clocks of navigation satellites[D]. Zhengzhou:Information Engineering University, 2006.
[23] 伍晓芳, 刘刚, 高峻雄, 等. 新型VCOCXO控温原理及实现方法研究[J]. 华中科技大学学报(自然科学版), 2004, 32(2):46-48. WU X F, LIU G, GAO J X, et al. The theory of temperature control for a new VCOCXO and its realization[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2004, 32(2):46-48(in Chinese).
[24] 苗苗, 周渭, 李智奇, 等. 用于时间同步的高精度短时间间隔测量方法[J]. 北京邮电大学学报, 2012, 35(4):77-80. MIAO M, ZHOU W, LI Z Q, et al. Application research of high-precision time interval measurement on time synchronization[J]. Journal of Beijing University of Posts and Telecommunications, 2012, 35(4):77-80(in Chinese).
[25] ALLAN D W, BARNES J A. In a modified "Allan Variance" with increased oscillator characterization ability[C]//Proceedings of The 35th Frequency Control Symposium, 1981:470-475.
[26] 涂佳, 谷德峰, 吴翊, 等. 基于星载双频GPS的长基线卫星编队高精度快速星间相对定位[J]. 系统工程与电子技术, 2011, 33(8):1850-1855. TU J, GU D F, WU Y, et al. Precise and rapid inter-satellite relative positioning for long baseline satellite formation using onboard dual-frequency GPS[J]. Systems Engineering and Electronics, 2011, 33(8):1850-1855(in Chinese).
[27] 吴佳鹏, 王盾, 李继猛, 等. 一种时间同步设备时延高精度校准系统及其方法:中国. ZL201418007734.3[P]. 2017-06-16 WU J P, WANG D, LI J M, et al. High precision delay calibration system and method for time synchronization equipment:China. ZL201418007734.3[P]. 2017-06-16(in Chinese).
Outlines

/