Electronics and Electrical Engineering and Control

Active vibration suppression and attitude control for flexible spacecraft

  • ZHANG Xiuyun ,
  • ZONG Qun ,
  • DOU Liqian ,
  • LIU Wenjing
Expand
  • 1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China;
    2. Science and Technology on Space Intelligent Control Laboratory, Beijing Institute of Control Engineering, Beijing 100190, China

Received date: 2018-07-02

  Revised date: 2018-08-27

  Online published: 2018-12-27

Supported by

National Natural Science Foundation of China (61673294, 61573060, 61773278)

Abstract

A comprehensive design of input shaper (IS)-Finite time Disturbance Observer (FDO)-integral sliding mode controller is proposed for the active vibration suppression of flexible appendages and attitude control of flexible spacecraft, with high accuracy and fast convergence time. Firstly, an IS, which can be used to reduce flexible vibration, is obtained based on the frequency and damping information of flexible modes. The IS is convolved with reference inputs to get the desired reference commands. Then, based on the spacecraft dynamic model, a novel adaptive FDO is designed to guarantee accurate estimation of disturbance and residual vibration, which avoids the constraint that the upper bound must be known in advance and drives the estimation errors to zero in finite time. Finally, multivariable finite-time integral sliding mode controller is designed based on the estimations of FDO, which ensures the fast and high-precision tracking control of desired reference commands, and the strict stability proof is given. Simulation results show that the comprehensive design strategy can guarantee that the flexible vibration is suppressed by 75% and the attitude stability degree is up to 10-4.

Cite this article

ZHANG Xiuyun , ZONG Qun , DOU Liqian , LIU Wenjing . Active vibration suppression and attitude control for flexible spacecraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(4) : 322503 -322503 . DOI: 10.7527/S1000-6893.2018.22503

References

[1] WU S N, CHU W M, MA X, et al. Multi-objective integrated robust H control for attitude tracking of a flexible spacecraft[J]. Acta Astronautica, 2018, 151:80-87.
[2] FUY, LIU Y, HUANG D. Boundary output feedback control of a flexible spacecraft system with input constraint[J]. IET Control Theory & Applications, 2018, 12(5):571-581.
[3] WUB L, WANG D W, POH E K. Decentralized sliding-mode control for attitude synchronization in spacecraft formation[J]. International Journal of Robust and Nonlinear Control, 2013, 23(11):1183-1197.
[4] 岳宝增, 李晓玉. 航天器平移及姿态机动自适应终端滑模控制[J]. 动力学与控制学报, 2018, 16(4):332-336. YUE B Z, LI X Y. Adaptive terminal sliding mode control for spacecraft with translation and attitude maneuvers[J]. Journal of Dynamics and Control, 2018, 16(4):332-336(in Chinese).
[5] SHTESSELY, TALEB M, PLESTAN F. A novel adaptive-gain supertwisting sliding mode controller:Methodology and application[J]. Automatica, 2012, 48(5):759-769.
[6] ZHU Z, XIA Y, FU M. Adaptive sliding mode control for attitude stabilization with actuator saturation[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10):4898-4907.
[7] CONG B, CHEN Z, LIU X. Disturbance observer-based adaptive integral sliding mode control for rigid spacecraft attitude maneuvers[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(10):1660-1671.
[8] JIN E, SUN Z. Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control[J]. Aerospace Science and Technology, 2008, 12(4):324-330.
[9] FENG Y, YU X, HAN F. On nonsingular terminal sliding-mode control of nonlinear systems[J]. Automatica, 2013, 49(6):1715-1722.
[10] YANG L, YANG J. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust and Nonlinear Control, 2011, 21(16):1865-1879.
[11] LU K, XIA Y Q. Finite-time attitude stabilization for rigid spacecraft[J]. International Journal of Robust and Nonlinear Control, 2015, 25(1):32-51.
[12] ZONG Q, ZHANG X Y, SHAO S K, et al. Disturbance observer-based fault-tolerant attitude tracking control for rigid spacecraft with finite-time convergence[J/OL]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, (2017-11-19)[2018-06-13]. https://doi.org/10.1177/0954410017740918.
[13] SHAO S K, ZONG Q, TIAN B L, et al. Finite-time sliding mode attitude control for rigid spacecraft without angular velocity measurement[J]. Journal of the Franklin Institute, 2017, 354(12):4656-4674.
[14] 宗群, 邵士凯, 张秀云, 等. 刚体航天器有限时间输出反馈姿态跟踪控制[J]. 哈尔滨工业大学学报, 2017, 46(9):136-143. ZONG Q, SHAO S K, ZHANG X Y, et al. Finite-time output feedback attitude tracking control for rigid spacecraft[J]. Journal of Harbin Institute of Technology, 2017, 46(9):136-143(in Chinese).
[15] XIAO B, HU Q L, FRISWELL M I. Active fault-tolerant attitude control for flexible spacecraft with loss of actuator effectiveness[J]. International Journal of Adaptive Control & Signal Processing, 2013, 27(11):925-943.
[16] SINGHOSE W. Command shaping for flexible systems:A review of the first 50 years[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(4):153-168.
[17] YUE B Z, ZHU L M. Hybrid control of liquid filled spacecraft maneuver by dynamic inversion and input shaping[J]. AIAA Journal, 2014, 52(3):618-626.
[18] MAR R, GOYAL A, NGUYEN V, et al. Combined input shaping and feedback control for double-pendulum systems[J]. Mechanical Systems and Signal Processing, 2017, 85(15):267-277.
[19] HU Q L. Input shaping and variable structure control for simultaneous precision positioning and vibration reduction of flexible spacecraft with saturation compensation[J]. Journal of Sound and Vibration, 2008, 318(12):18-35.
[20] 苗双全, 丛炳龙, 刘向东. 基于输入成形的柔性航天器自适应滑模控制[J]. 航空学报, 2013, 34(8):1906-1914. MIAO S Q, CONG B L, LIU X D. Adaptive sliding mode control of flexible spacecraft on input shaping[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1906-1914(in Chinese).
[21] 肖冰, 胡庆雷, 霍星, 等. 执行器故障的柔性航天器姿态滑模容错控制[J]. 航空学报, 2011, 32(10):1869-1878. XIAO B, HU Q L, HUO X, et al. Sliding mode fault tolerant attitude control for flexible spacecraft under actuator fault[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1869-1878(in Chinese).
[22] COSTIC B T, DAWSON D M, QUWIEOZ M S, et al. Quaternion-based adaptive attitude tracking controller without velocity measurements[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(6):1214-1222.
[23] SHEN Q, WANG D W, ZHU S Q, et al. Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2390-2405.
[24] EDWARDS C, SPURGEON S K, PATTON R J. Sliding mode observers for fault detection and isolation[J]. Automatica, 2000, 36(4):541-553.
[25] UTKIN V I. Sliding modes in control optimization[M]. Berlin:Springer-Verlag, 1992.
[26] 程丽丽. 有限时间收敛控制性能指标的分析研究[D]. 曲阜:曲阜师范大学, 2007. CHENG L L. The analysis of performance indicators of finite time convergence control[D]. Qufu:Qufu Normal University, 2007(in Chinese).
[27] WU Y Q, YU X H, MAN Z H. Terminal sliding mode control design for uncertain dynamic systems[J]. Systems & Control Letters, 1998, 34(5):281-287.
[28] TIAN B L, LIU L H, LU H C, et al. Multivariable finite time attitude control for quadrotor UAV:Theory and experimentation[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2567-2577.
Outlines

/