Fluid Mechanics and Flight Mechanics

γ-Reθ transition model based on IDDES frame

  • YI Miaorong ,
  • ZHAO Huiyong ,
  • LE Jialing ,
  • XIAO Baoguo ,
  • ZHENG Zhonghua
Expand
  • Science and Technology on Scramjet Laboratory, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-10-15

  Revised date: 2018-11-02

  Online published: 2018-12-24

Supported by

National Natural Science Foundation of China (51676204);FengLei Youth Innovation Fund of CARDC (PJD20170134)

Abstract

The improved γ-Reθ transition model for hypersonic flow has the disability of capturing the disturbances in forced transition. To solve the problem, the RANS (Reynolds Averaged Navier-Stokes) framework is modified to IDDES (Improved Delayed Detached Eddy Simulation)frameworks. The new method can not only simulate the natural transition in the γ-Reθ model but also simulate the forced transition process precisely by capturing more details in disturbances in the IDDES methods. The results of a series of natural transition of simple geometry cases and the roughness induced transition in a Mach number 6 flat plate show that the new method has the advantages of both the γ-Reθ model and the IDDES methods. When simulating the natural transition, the influence rules on transition of important parameters such as Reynolds number and leading edge radius could be correctly reflected. When simulating the forced transition, the formation, development, and breakdown processes of the streamwise vortexes induced by the roughness element could be also captured.

Cite this article

YI Miaorong , ZHAO Huiyong , LE Jialing , XIAO Baoguo , ZHENG Zhonghua . γ-Reθ transition model based on IDDES frame[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(8) : 122726 -122726 . DOI: 10.7527/S1000-6893.2018.22726

References

[1] 周恒,赵耕夫. 流动稳定性[M]. 北京:国防工业出版社,2004:1-86. ZHOU H, ZHAO G F. Hydrodynamic stability[M].Beijing:National Defense Industry Press, 2004:1-86(in Chinese).
[2] LEE C, CHEN S Y. Recent progress in the study of transition in the hypersonic boundary layer[J]. National Science Review, 2019, 6(1):155-170.
[3] MAYER C, TERZI D, FASEL H. DNS of complete transition to turbulence via oblique breakdown at Mach 3:Part Ⅱ:AIAA-2009-3558[R]. Reston, VA:AIAA, 2009.
[4] DUCROS F, COMTE P, LESIEUR M. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate[J]. Journal of Fluid Mechanics, 1996, 326:1-36.
[5] MACK L M. Boundary layer linear stability theory:AGARD Report No. 709[R]. Paris:AGARD, 1984.
[6] KOCIAN T S, MOYES A J, MULLEN C D, et al. PSE and spatial biglobal instability analysis of HIFiRE-5 geometry:AIAA-2016-3346[R]. Reston, VA:AIAA, 2016.
[7] BERRY S A, NOWAK R J, HORVATH T J. Boundary layer control for hypersonic airbreathing vehicles:AIAA-2004-2246[R]. Reston, VA:AIAA, 2004.
[8] MENTER F R, LANGTRY R B.A correlation-based transition model using local variables part1-model formulation:GT 2004-53452[R]. New York:ASME, 2004.
[9] LANGTRY R B. A Correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:University of Stuttgart, 2006:34-57.
[10] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[11] WATANABE Y, MISAKA T, OBAYASHI S.Application of crossflow transition criteria to local correlation-based transition model:AIAA-2009-1145[R]. Reston, VA:AIAA, 2009.
[12] SEYFERT C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations:AIAA-2012-0448[R]. Reston, VA:AIAA, 2012.
[13] SEYFERT C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[J]. Journal of Aircraft, 2013, 50(5):1533-1539.
[14] LANGTRY R B, SENGUPTA K, YEH D T, et al. Extending the γ-Reθt local correlation based transition model for crossflow effects:AIAA-2015-2474[R]. Reston, VA:AIAA, 2015.
[15] LANGEL C M, CHOW R, DAM C P. A computational approach to simulating the effects of realistic surface roughness on boundary layer transition:AIAA-2014-0234[R]. Reston, VA:AIAA, 2014.
[16] KRAUSE M, BEHR M, BALLMANN J.Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model:AIAA-2008-2598[R]. Reston, VA:AIAA, 2008.
[17] ZHANG X D, GAO Z H. A numerical research on a compressibility-correlated langtrys transition model for double wedge boundary layer flows[J]. Chinese Journal of Aeronautics, 2011, 24(3):249-257.
[18] CHENG G, NICHOLS R, NEROORKAR K D,et al. Validation and assessment of turbulence transition models:AIAA-2009-1141[R]. Reston, VA:AIAA, 2009.
[19] YI M R, ZHAO H Y, LE J L. Hypersonic natural and forced transition simulation by correlation-based intermittency model:AIAA-2017-2337[R]. Reston, VA:AIAA, 2017.
[20] 易淼荣,赵慧勇,乐嘉陵. 基于γ-Reθ转捩模型的高超声速复杂构型转捩模拟[J]. 实验流体力学, 2018, 32(4):1-11. YI M R, ZHAO H Y, LE J L. Hypersonic boundary layer transition simulation of complex configuration using γ-Reθtransition model[J].Journal of Experiments in Fluid Mechanics, 2018, 32(4):1-11(in Chinese).
[21] CHEN X, ZHU Y, LEE C.Interactions between second mode and low-frequency waves in a hypersonic boundary layer[J]. Journal of Fluid Mechanics, 2017, 820:693-735.
[22] 潘翀, 王晋军. 自由来流扰动引起的旁路转捩研究进展[J]. 力学进展, 2011, 41(6):668-685. PAN C, WANG J J. Progress in bypass transition induced by free-stream disturbance[J]. Advances in Mechanics. 2011, 41(6):668-685(in Chinese).
[23] YOON S, BARNHARDT M, CANDLER G. Simulations of high-speed flow over an isolated roughness:AIAA-2010-1573[R]. Reston, VA:AIAA, 2010.
[24] DUAN Z W, XIAO Z X, FU S. Simulation of transition triggered by isolated roughness in hypersonic boundary layer:AIAA-2012-3076[R]. Reston, VA:AIAA, 2012.
[25] XIAO L H, XIAO Z X, DUAN Z W, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150.
[26] BORG M P. Laminar instability and transition on the X-51A[D]. West Lafayette, IN:Purdue University, 2009:38-68.
[27] SORENSEN N N, BECHMANN A, ZAHLE F. 3D CFD computations of transitional flows using DES and a correlation based transition model[J]. Wind Energy, 2011, 14(1):77-90.
[28] ALAM M F, WALTERS D K, THOMPSON D S. A transition-sensitive hybrid RANS/LES modeling methodology for CFD applications:AIAA-2013-0995[R]. Reston, VA:AIAA, 2013.
[29] WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for reynolds-averaged navier-stokes simulations of transitional flow[J]. ASME Journal of Fluids Engineering, 2008, 130(12):121401.
[30] 乔磊, 白俊强,华俊. Gamma-Theta经验转捩模型在DES中的应用[J]. 航空工程进展, 2013, 4(2):226-231. QIAO L, BAI J Q, HUA J.Application of Gamma-Theta transition model in DES[J]. Advances in Aeronautical Science and Engineering, 2013, 4(2):226-231(in Chinese).
[31] 赵慧勇.超燃冲压整体发动机并行数值研究[D]. 绵阳:中国空气动力研究与发展中心, 2005:41-97. ZHAO H Y.Massively parallel computation on scramjet combustor[D]. Mianyang:China Aerodynamics Research and Development Center,2005:41-97(in Chinese).
[32] GRITSKEVICH M S, GARBARUK A V, SCHÜTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow Turbulence & Combustion, 2012, 88(3):431-449.
[33] 韩亦宇. 高超声速进气道激波振荡的DES数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2014:2-45. HAN Y Y. Detached Eddy Simulation(DES) of hypersonic inlet shock oscillation[D]. Mianyang:China Aerodynamics Research and Development Center, 2014:2-45(in Chinese).
[34] GOEBEL S G. An experimental investigation of compressible turbulent mixing layers[D]. Urbana-Champaign, IL:University of Illinois, 1990:20-79.
[35] FORSYTHE J R.Investigation of modified Menter's two-equation turbulence models for supersonic applications:AIAA-1999-0873[R]. Reston, VA:AIAA, 1999.
[36] CHEN F J, MALIK M R. Boundary-Layer transition on a cone and flat plate at Mach 3.5[J]. AIAA Journal, 1989, 27(6):687-693.
[37] NEUENHAHN T, OLIVIER H. Influence of the wall temperature and the entropy layer effects on double wedge shock boundary layer interactions:AIAA-2006-8136[R]. Reston, VA:AIAA, 2006.
[38] TIRTEY S C, CHAZOT O, WALPOT L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011,50(2):407-418.
[39] TIRTEY S C, CHAZOT O.Characterization of hypersonic roughness induced transition for the EXPERT flight experiment:AIAA-2009-7215[R]. Reston, VA:AIAA, 2006.
Outlines

/