Electronics and Electrical Engineering and Control

Analysis of angular motion of dual-spin projectile with fixed-canards under period average control

  • ZHANG Xin ,
  • YAO Xiaoxian ,
  • YANG Zhong ,
  • GUO Zhiyuan
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. College of Transportation, Ludong University, Yantai 264025, China

Received date: 2018-06-04

  Revised date: 2018-11-12

  Online published: 2018-12-11

Supported by

Shandong Provincial Natural Science Foundation of China (ZR2017PEE016)

Abstract

To study the period average control method applied to the dual-spin projectile with fixed-canards, the Fourier transform of the roll angle of the course correction fuse is used to obtain the angular motion model for the dual-spin projectile under period average control. Then the angular motion of the dual-spin projectile with fixed-canards under period average control is analyzed. A design of the angular frequency of the period average control is proposed based on the performance of the angular motion and the performance limitations of the actuator. Two specific designs are analyzed and verified through six degrees of freedom simulations. The results indicate that the analyses of the angular motion of the dual-spin projectile with fixed-canards can reveal the properties of the period average control method, and the designed method can produce proper angular frequencies.

Cite this article

ZHANG Xin , YAO Xiaoxian , YANG Zhong , GUO Zhiyuan . Analysis of angular motion of dual-spin projectile with fixed-canards under period average control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(4) : 322452 -322452 . DOI: 10.7527/S1000-6893.2018.22452

References

[1] REGAN F J, SMITH J. Aeroballistics of a terminally corrected spinning projectile (TCSP)[J]. Journal of Spacecraft and Rockets, 1975, 12(12):733-738.
[2] HAMEL N, GAGNON E. CFD and parametric study on a 155 mm artillery shell equipped with a roll-decoupled course correction fuze[C]//29th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2011:1-10.
[3] 曹红锦. 美国精确制导组件技术发展现状分析[J]. 四川兵工学报, 2015, 36(9):22-25. CAO H J. Analysis of the development status of American precision guidance kit technology[J]. Journal of Sichuan Ordnance, 2015, 36(9):22-25(in Chinese).
[4] COSTELLO M, PETERSON A. Linear theory of a dual-spin projectile in atmospheric flight[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(5):789-797.
[5] WERNERT P, LEOPOLD F, LEHMANN L, et al. Wind tunnel tests and open-loop trajectory simulations for a 155 mm canards guided spin stabilized projectile[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston, VA:AIAA, 2008:1-17.
[6] WERNERT P. Stability analysis for canard guided dual-spin stabilized projectiles[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston, VA:AIAA, 2009:1-24.
[7] WERNERT P, THEODOULIS S. Modelling and stability analysis for a class of 155 mm spin-stabilized projectiles with course correction fuse (CCF)[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston, VA:AIAA, 2011:1-14.
[8] THEODOULIS S, WERNERT P. Flight control for a class of 155 mm spin-stabilized projectiles with course correction fuse (CCF)[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2011:1-11.
[9] THEODOULIS S, GASSMANN V, WERNERT P. Guidance and control design for a class of spin-stabilized fin-controlled projectiles[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):517-531.
[10] THEODOULIS S, SEVE F, WERNERT P. Robust gain-scheduled autopilot design for spin-stabilized projectiles with a course-correction fuze[J]. Aerospace Science and Technology, 2015, 42:477-489.
[11] SEVE F, THEODOULIS S, WERNERT P, et al. Flight dynamics modeling of dual-spin guided projectiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4):1625-1641.
[12] CHANG S J, WANG Z Y, LIU T Z. Analysis of spin-rate property for dual-spin-stabilized projectiles with canards[J]. Journal of Spacecraft and Rockets, 2014, 51(3):958-966.
[13] 许诺, 于剑桥, 王亚飞, 等. 固定翼双旋弹动力学特性分析[J]. 兵工学报, 2015, 36(4):602-609. XU N, YU J Q, WANG Y F, et al. Analysis of dynamic characteristics of fixed-wing dual-spin projectiles[J]. Acta Armamentarii, 2015, 36(4):602-609(in Chinese).
[14] 许诺, 于剑桥, 王亚飞. 固定翼双旋弹动力学分岔特性分析[J]. 航空学报, 2015, 36(12):3798-3808. XU N, YU J Q, WANG Y F. Dynamic bifurcation characteristics analysis on fixed-canard dual-spin projectiles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3798-3808(in Chinese).
[15] 常思江, 王中原, 刘铁铮. 鸭式布局双旋稳定弹强迫运动理论研究[J]. 兵工学报, 2016, 37(5):829-839. CHANG S J, WANG Z Y, LIU T Z. A theoretical study of forced motion for dual-spin-stabilized projectiles with canards[J]. Acta Armamentarii, 2016, 37(5):829-839(in Chinese).
[16] 张冬旭. 可控滚转二维弹道修正机构的研究[D]. 北京:北京理工大学, 2015:19-39. ZHANG D X. Research on the rolling controlled two-dimensional trajectory correction mechanism[D]. Beijing:Beijing Institute of Technology, 2015:19-39(in Chinese).
[17] 许诺, 于剑桥, 王亚飞. 基于周期平均的固定翼双旋弹弹道修正方法[J]. 航空学报, 2015, 36(9):2892-2899. XU N, YU J Q, WANG Y F. Trajectory correcting method of fixed-canard dual-spin projectiles based on period average[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2892-2899(in Chinese).
[18] 郭致远, 姚晓先, 张鑫. 基于周期平均的固定舵双旋火箭弹控制方法[J]. 航空学报, 2017, 38(12):321307. GUO Z Y, YAO X X, ZHANG X. Control method for a class of fixed-canard dual-spin rockets based on period average[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):321307(in Chinese).
[19] 韩子鹏. 弹箭外弹道学[M]. 北京:北京理工大学出版社, 2008:127-149. HAN Z P. Exterior ballistics of projectiles and rockets[M]. Beijing:Beijing Institute of Technology Press, 2008:127-149(in Chinese).
[20] 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京:北京理工大学出版社, 2008:53-55. QIAN X F, LIN R X, ZHAO Y N. Missile flight mechanics[M]. Beijing:Beijing Institute of Technology Press, 2008:53-55(in Chinese).
Outlines

/