Electronics and Electrical Engineering and Control

Anti-bias track association algorithm based on Gaussian mixture model

  • LI Baozhu ,
  • DONG Yunlong ,
  • DING Hao ,
  • GUAN Jian
Expand
  • Institute of Information Fusion, Naval Aviation University, Yantai 264001, China

Received date: 2018-09-05

  Revised date: 2018-10-15

  Online published: 2019-04-29

Supported by

National Natural Science Foundation of China (61871392, 61531020, 61871391, 61471382, U1633122); Aeronautical Science Foundation of China (20150184003,20162084005,20162084006)

Abstract

To address the track-to-track association problem in the presence of time-varied sensor biases and different targets reported by different sensors, Gaussian Mixture Model (GMM) and neighborhood topology information are used in this paper. The robust track-to-track association problem is turned into a non-rigid point matching problem. The Gaussian mixture model is established with better robustness to ‘unpaired’ tracks. The weight of each Gaussian component is decided by the neighborhood topology information between tracks. The optimal closed solution of the Gaussian mixture model is solved by Expectation Maximization (EM) algorithm. In Expectation-step of the EM algorithm the correspondence of tracks is solved, and in Maximization-step the ‘unpaired’ tracks ratio are calculated. Finally, the track-to-track association is obtained by judgment. Monte carlo simulation demonstrates the effectiveness of the proposed approaches under different sensor biases, targets densities and detection probabilities.

Cite this article

LI Baozhu , DONG Yunlong , DING Hao , GUAN Jian . Anti-bias track association algorithm based on Gaussian mixture model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(6) : 322650 -322650 . DOI: 10.7527/S1000-6893.2018.22650

References

[1] BAR-SHALOM Y, FORTMANN T E. Tracking and data association[M]. Orlando:Academic Press INC., 1988:1-20.
[2] 何友, 王国宏, 关欣. 信息融合理论及应用[M]. 北京:电子工业出版社, 2010:178-193. HE Y, WANG G H, GUAN X. Information fusion theory with applications[M]. Beijing:Publishing House of Electronics Industry, 2010:178-193(in Chinese).
[3] 董凯, 王海鹏, 刘瑜. 基于拓扑统计距离的航迹抗差关联算法[J]. 电子与信息学报, 2015, 37(1):50-55. DONG K, WANG H P, LIU Y. Anti-bias track association algorithm based on topology statistical distance[J]. Journal of Electronics &Information Technology, 2015, 37(1):50-55(in Chinese).
[4] 李洋, 张靖. 基于自适应滑动窗均值OSPA航迹关联算法[J]. 电子学报, 2016, 44(2):353-357. LI Y, ZHANG J. Track fusion based on the mean OSPA distance with an adaptive sliding window[J]. Acta Electronica Sinica, 2016, 44(2):353-357(in Chinese).
[5] 石玥, 王钺, 王树刚, 等. 基于目标参照拓扑的模糊航迹关联方法[J]. 国防科技大学学报, 2006, 28(4):105-109. SHI Y, WANG Y, WANG S G, et al. Fuzzy data association based on target topology of reference[J]. Journal of National University of Defense Technology, 2006, 28(4):105-109(in Chinese).
[6] TIAN W, WANG Y, SHAN X M, et al. Track-to-track association for biased data based on the reference topology feature[J]. IEEE Signal Processing Letters, 2014, 21(4):449-453.
[7] TIAN W, WANG Y, DU X J, et al. Reference pattern-based track-to-track association with biased data[J]. IEEE Transactions on Aerospace & Electronic Systems, 2016, 52(1):501-512.
[8] ZHU H Y, HAN S Y. Track-to-track association based on structural similarity in the presence of sensor biases[J]. Journal of Applied Mathematics, 2014, 2014:1-8.
[9] MORI S, CHANG K C, CHONG C Y. Performance prediction of feature-aided track-to-track association[J]. IEEE Transactions on Aerospace & Electronic Systems, 2014, 50(4):2593-2603.
[10] ZHU H Y, CHEN S. Track fusion in the presence of sensor biases[J]. IET Signal Process, 2014, 8(9):958-967.
[11] QI L, DONG K, LIU Y, et al. Anti-bias track-to-track association algorithm based on distance detection[J]. IET Radar, Sonar & Navigation, 2017, 11(2):269-276.
[12] 齐林, 刘瑜, 任华龙, 等. 空基多雷达航迹抗差关联算法[J]. 航空学报, 2018, 39(3):226-234. QI L, LIU Y, REN H L, et al. Air-platform multi-radar anti-bias tracks association algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2017, 39(3):226-234(in Chinese).
[13] ZHU H, LEUNG H, YUEN K V. A joint data association, registration, and fusion approach for distributed tracking[J]. Information Sciences an International Journal, 2015, 324(C):186-196.
[14] ZHU H Y, WANG C. Joint track-to-track association and sensor registration at the track level[J]. Digital Signal Processing, 2015, 41:48-59.
[15] PAPAGEORGIOU D J, SERGI J D. Simultaneous track-to-track association and bias removal using multistart local search[C]//IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2008:1-14.
[16] HAMBRICK D, BLAIR W D. Multisensor track association in the presence of bias[C]//IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2014:1-6.
[17] 何友, 宋强, 熊伟. 基于傅里叶变换的航迹对准关联算法[J]. 航空学报, 2010, 31(2):356-362. HE Y, SONG Q, XIONG W. A track registration-correlation algorithm based on fourier transform[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):356-362(in Chinese).
[18] ZHU H, WANG M L, YUEN K V, et al. Track-to-track association by coherent point drift[J]. IEEE Signal Processing Letters, 2017, 24(5):643-647.
[19] ZHU H Y, WANG W, WANG C. Robust track-to-track association in the presence of sensor biases and missed detections[J]. Information Fusion, 2016, 27:33-40.
[20] 李保珠, 董云龙, 李秀友, 等. 基于t分布混合模型的抗差关联算法[J]. 电子与信息学报, 2017, 39(7):1774-1778. LI B Z, DONG Y L, LI X Y, et al. Anti-bias track association algorithm based on t-distribution mixture model[J]. Journal of Electronics &Information Technology, 2017, 39(7):1774-1778(in Chinese).
[21] DOMINIC S, BA-TUONG V, BA-NGU V. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8):3447-3457.
[22] MYRONENKO A, SONG X. Point set registration:Coherent point drift[J]. IEEE Transactions on Software Engineering, 2010, 32(12):2262-2275.
[23] WU C F J. On the convergence properties of the EM algorithm[J]. The Annals of Statistics, 1983, 11(1):95-103.
Outlines

/