Fluid Mechanics and Flight Mechanics

A multi-dynamics approach to turbofan engine modeling

  • PAN Muxuan ,
  • CHEN Qianglong ,
  • ZHOU Yongquan ,
  • ZHOU Wenxiang ,
  • HUANG Jinquan
Expand
  • 1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. AECC Aero Engine Control System Institute, Wuxi 214063, China

Received date: 2018-08-28

  Revised date: 2018-09-21

  Online published: 2018-11-23

Supported by

National Natural Science Foundation of China (51406084); Jiangsu Province Key Laboratory Foundation of Aerospace Power System (NJ20160020)

Abstract

Considering the rotor inertia, the storage of mass and energy in volumes and the heat exchanging between high-temperature components and low-temperature components, an approach to model turbofan engines is presented. By adopting the shaft dynamics, the volume dynamics, and the thermodynamics, a nonlinear dynamic mathematical model for turbofan engines is formed. The characteristic parameters at the primary sections are obtained by solving a series of first-order ordinary differential equations. The new model can not only simulate the dynamic characteristics of 12 key parameters of turbofan engine, such as temperatures, pressures, and rotor speeds, but also improve the real-time performance by avoiding solving the traditional rotor dynamics iterative model. The comparison between the new model outputs and the test measurements is conducted. The results show that the static error is less than 1.6% and the maximum dynamic error is less than 5%, and the average time for a single flow-path computation is 0.009 ms.

Cite this article

PAN Muxuan , CHEN Qianglong , ZHOU Yongquan , ZHOU Wenxiang , HUANG Jinquan . A multi-dynamics approach to turbofan engine modeling[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(5) : 122632 -122632 . DOI: 10.7527/S1000-6893.2018.22632

References

[1] SELLERS J F, DANIELE C J. DYNGEN-A computer program for calculating stead-state and transient performance of turbojet and turbofan engines:NASA-TN-D-7901[R]. Washington, D. C.:NASA, 1975:1-3.
[2] DANIELE C J, KROSEL S M, SZUCH J R, et al. Digital computer program for generating dynamic turbofan engine models(DIGTEM):NASA-TM-83446[R]. Washington, D. C.:NASA, 1983:1-3.
[3] DECASTRO J, LITT J, FREDERICK D. A modular aero-propulsion system simulation of a large commercial aircraft engine[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, VA:AIAA, 2008:4579-4594.
[4] 唐海龙, 张津. 面向对象的航空发动机性能仿真程序设计方法研究[J]. 航空动力学报, 1999, 14(4):421-424. TANG H L, ZHANG J. Research on object-oriented aeroengine performance simulation program design method[J]. Journal of Aerospace Power, 1999, 14(4):421-424(in Chinese).
[5] 陶金伟, 黄金泉, 周文祥. 航空发动机组态建模技术研究[J]. 航空动力学报, 2005, 20(4):684-688. TAO J W, HUANG J Q, ZHOU W X. Research of configuration modeling technology for aero-engines[J]. Journal of Aerospace Power, 2005, 20(4):684-688(in Chinese).
[6] 时瑞军, 周剑波, 张秋贵, 等. 加力式双转子混合排气涡扇发动机全状态数学建模技术[J]. 航空动力学报, 2013, 28(10):2384-2390. SHI R J, ZHOU J B, ZHANG Q G, et al. Modeling of whole processes of mixing exhaust afterburner twin spool turbofan engine[J]. Journal of Aerospace Power, 2013, 28(10):2384-2390(in Chinese).
[7] 李松林, 孙建国, 李建民, 等. 求解涡扇发动机数学模型的有限区域搜索方法[J]. 航空动力学报, 1997, 12(3):276-278. LI S L, SUN J G, LI J M, et al. Finite domain search method for solving mathematical model of turbofan engine[J]. Journal of Aerospace Power, 1997, 12(3):276-278(in Chinese).
[8] 樊思齐. 航空发动机控制[M]. 西安:西北工业大学出版社, 2008:112-131. FAN S Q. The control of aeroengine[M]. Xi'an:Northwestern Polytechnical University Press, 2008:112-131(in Chinese).
[9] 潘率诚, 李刚团, 丁朝霞, 等. 基于部件特性的航空发动机性能模型修正[J]. 燃气涡轮试验与研究, 2016, 29(6):26-29. PAN S C, LI G T, DING Z X, et al. Aero-engine performance model correction based on component performance map[J]. Gas Turbine Experiment and Research, 2016, 29(6):26-29(in Chinese).
[10] 唐世建, 童万军. 基于容积法的某涡扇发动机动态建模方法[J]. 航空动力学报, 2013, 28(3):709-713. TANG S J, TONG W J. Turbofan engine transient modeling based on inter-component volume method[J]. Journal of Aerospace Power, 2013, 28(3):709-713(in Chinese).
[11] 杨刚, 孙建国, 黄向华. 一种不需要迭代的发动机辅助变量建模方法[J]. 航空动力学报, 2003, 18(2):289-294. YANG G, SUN J G, HUANG X H. A non-iterative method of aero-engine modeling using complementary variables[J]. Journal of Aerospace Power, 2003, 18(2):289-294(in Chinese).
[12] 余江龙, 朴英. 一种简化算法的航空发动机全状态数学模型[J]. 航空动力学报, 2008, 23(3):510-515. YU J L, PIAO Y. Full range modeling of aero engine systems based on a simplified algorithm[J]. Journal of Aerospace Power, 2008, 23(3):510-515(in Chinese).
[13] KOPASAKIS G, CONNOLLY J W, PAXSON D E, et al. Volume dynamics propulsion system modeling for supersonics vehicle research[J]. Journal of Turbomachinery, 2010, 132(4):61-70.
[14] KOPASAKIS G, CHENG L, CONNOLLY J W. Stage-by-stage and parallel flow path compressor modeling for a variable cycle engine[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston, VA:AIAA, 2015:4143-4156.
[15] SANGHI V, LAKSHMANAN B K, RAJASEKARAN R. Aerothermal model for real-time digital simulation of a mixed-flow turbofan engine[J]. Journal of Propulsion & Power, 2001, 17(3):629-635.
[16] JAW L C, MATTINGLY J D. Aircraft engine controls:Design, system analysis, and health monitoring[M]. Reston, VA:AIAA, 2009:39-49.
[17] KOPASAKIS G, CONNOLLY J W, SEIDEL J. Propulsion system dynamic modeling of the NASA supersonic concept vehicle for AeroPropulsoServoElasticity[C]//50th AIAA/ASMW/SAE/ASEE Joint Propulsion Conference. Reston, VA:AIAA, 2014:3684-3699.
[18] 周文祥, 黄金泉, 窦建平. 涡扇发动机部件级起动模型[J]. 航空动力学报, 2006, 21(2):248-253. ZHOU W X, HUANG J Q, DOU J P. Development of component-level startup model for a turbofan engine[J]. Journal of Aerospace Power, 2006, 21(2):248-253(in Chinese).
[19] PILIDIS P, MACCALLUM N R L. The effect of heat transfer on gas turbine transients[C]//ASME 1986 International Gas Turbine Conference and Exhibit. New York:ASME Press, 1986:114-124.
[20] 吴虎, 廉小纯. 热传递对涡轮发动机瞬态性能影响的数值分析[J]. 推进技术, 2002, 23(6):445-447. WU H, LIAN X C. Numerical simulation of effects of heat transfer on the transient performance of gas turbine engines[J]. Journal of Propulsion Technology, 2002, 23(6):445-447(in Chinese).
[21] 谢红专, 朱益梁. 热传递对涡轮增压器效率特性影响的研究[J]. 内燃机与动力装置, 2012(3):1-4. XIE H Z, ZHU Y L. Analysis on impact of heat transfer on turbocharger efficiency performance[J]. Internal Combustion Engine & Powerplant, 2012(3):1-4(in Chinese).
[22] 殷锴, 周文祥, 乔坤, 等. 航空发动机部件级模型实时性提高方法研究[J]. 推进技术, 2017, 38(1):199-206. YIN K, ZHOU W X, QIAO K, et al. Research on methods of improving real-time performance for aero-engine component-level model[J]. Journal of Propulsion Technology, 2017, 38(1):199-206(in Chinese).
[23] 钱德峰, 周文祥. 大涵道比民用涡扇发动机建模技术研究[J]. 江苏航空, 2010(S1):13-19. QIAN D F, ZHOU W X. Research on modeling technology of large bypass ratio civil turbofan engine[J]. Jiangsu Aviation, 2010(S1):13-19(in Chinese).
[24] 熊勇军, 李鼎文. 某新型航空发动机的建模及仿真研究[J]. 测控技术, 2016, 35(1):141-144. XIONG Y J, LI D W. Research on modeling and simulation technology for aero-engines[J]. Measurement & Control Technology, 2016, 35(1):141-144(in Chinese).
[25] 夏飞, 黄金泉, 周文祥. 基于MATLAB/SIMULINK的航空发动机建模与仿真研究[J]. 航空动力学报, 2007, 22(12):2131-2138. XIA F, HUANG J Q, ZHANG W X. Modeling and simulation of aeroengines based on MATLAB[J]. Journal of Aerospace Power, 2007, 22(12):2131-2138(in Chinese).
Outlines

/