Aiming at the formation transformation of Unmanned Aerial Vehicle(UAV), including formation assembly, formation maintenance, and formation reconstruction, this paper proposes a multi-UAV formation transformation model which subjects to time coordination from the perspective of track planning. Based on the condition of time synergy, the energy consumption and completion time of the formation transformation are selected as the efficiency measurement indicators. Then the formation assembly, formation maintenance, and formation reconstruction are planned and the optimal spatial position of the formation transformation is given. This paper first analyzes the formation assembly problem with the specified formation and no specified position, then analyzes the formation maintenance problem as the overall movement of the formation. Finally, the motion decomposition is used to decompose the formation reconstruction problem into formation assembly and formation movement. Based on the different characteristics of formation assembly, formation maintenance, and formation reconstruction, the optimal efficiency calculation formulas of these specific formation transformations are given. Finally the simulation experiments are carried out. The experimental results show that the model can achieve the expected optimal efficiency formation transformation.
GU Wei
,
TANG Jun
,
BAI Liang
,
LAO Songyang
. Time synergistic optimal efficiency model for formation transformation of multiple UAVs[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019
, 40(6)
: 322599
-322599
.
DOI: 10.7527/S1000-6893.2018.22599
[1] 周绍磊, 祁亚辉, 张雷, 等. 切换拓扑下无人机集群系统时变编队控制[J]. 航空学报, 2017, 38(4):259-267. ZHOU S L, QI Y H, ZHANG L, et al. Time-varying formation control of UAV swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):259-267(in Chinese).
[2] NIGAM N, BIENIAWSKI S, KROO I, et al. Control of multiple UAVs for persistent surveillance:Algorithm and flight test results[J]. IEEE Transactions on Control Systems Technology, 2012, 20(5):1236-1251.
[3] 沈林成, 牛轶峰, 朱华勇. 多无人机自主协同控制理论与方法[M]. 北京:国防工业出版社, 2013:1-9. SHEN L C, NIU Y F, ZHU H Y. Theories and methods of autonomous cooperative control for multiple UAVs[M]. Beijing:National Defence Industry Press, 2013:1-9(in Chinese).
[4] 李文皓, 张珩. 无人机编队飞行技术的研究现状与展望[J]. 飞行力学, 2007, 25(1):9-11. LI W H, ZHANG H. Reviews on unmanned aerial vehicle formation-flight[J]. Flight Dynamics, 2007, 25(1):9-11(in Chinese).
[5] DARRAH M, NILAND W, STOLARIK B. Multiple UAV dynamic task allocation using mixed integer linear programming in a SEAD mission[C]//InfoTech at Aerospace:Advancing Contemporary Aerospace Technologies and Their Integration. Reston, VA:AIAA, 2005:2324-2334.
[6] BANGASH Z A, SANCHEZ R P, AHMED A, et al. Aerodynamics of formation flight[J]. Journal of Aircraft, 2012, 43(43):907-912.
[7] FURUKAWA T, DURRANT-WHYTE H F, BOURGAULT F, et al. Time-optimal coordinated control of the relative formation of multiple vehicles[C]//IEEE International Symposium on Computational Intelligence in Robotics and Automation. Piscataway, NJ:IEEE Press, 2003:259-264.
[8] 华思亮, 陈宗基, 袁利平. 基于模型预测控制的无人机编队自主重构研究[J]. 系统仿真学报, 2009(20):383-386. HUA S L, CHEN Z J, YUAN L P. Study on UAVs formation autonomous reconfiguration based on MPC[J]. Journal of System Simulation, 2009(20):383-386(in Chinese).
[9] 熊伟, 陈宗基, 周锐. 运用混合遗传算法的多机编队重构优化方法[J]. 航空学报, 2008, 29(S1):209-214. XIONG W, CHEN Z J, ZHOU R. Optimization of multiple flight vehicle formation reconfiguration using hybrid genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(S1):209-214(in Chinese).
[10] 王祝, 刘莉, 龙腾, 等. 基于罚函数序列凸规划的多无人机轨迹规划[J]. 航空学报, 2016, 37(10):3149-3158. WANG Z, LIU L, LONG T, et al. Trajectory planning for muti-UAVs using penalty sequential convex pro-gramming[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3149-3158(in Chinese).
[11] AJORLOU A, MOEZZI K, AGHDAM A G, et al. Two-stage time-optimal formation reconfiguration strategy under acceleration and velocity constraints[C]//Decision and Control. Piscataway, NJ:IEEE Press, 2010:7455-7460.
[12] AJORLOU A, MOEZZI K, AGHDAM A G, et al. Two-stage energy-optimal formation reconfiguration strategy[J]. Systems & Control Letters, 2012, 48(10):2587-2591.
[13] 邓婉, 王新民, 王晓燕, 等. 无人机编队队形保持变换控制器设计[J]. 计算机仿真, 2011, 28(10):73-77. DENG W, WANG X M, WANG X Y, et al. Controller design of UAVs formation keep and change[J]. Computer Simulation, 2011, 28(10):73-77(in Chinese).
[14] MOTZKIN T S, WALSH J L. Polynomials of best approximation on a real finite point set. I[J]. Transactions of the American Mathematical Society, 1959, 91(2):231-245.
[15] LAWSON C L. Contributions to the theory of linear least maximum approximation[D]. Los Angeles:University of California, 1961:10-25.
[16] DUAN H, LUO Q, SHI Y, et al. Hybrid particle swarm optimization and genetic algorithm for multi-UAV formation reconfiguration[J]. IEEE Computational Intelligence Magazine, 2013, 8(3):16-27.
[17] DOGAN A, VENKATARAMANAN S. Nonlinear control for reconfiguration of unmanned-aerial-vehicle formation[J]. Journal of Guidance Control & Dynamics, 2005, 28(4):667-678.
[18] SULTAN C, SEEREERAM S, MEHRA R K, et al. Energy optimal reconfiguration for large scale formation flying[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2005:2986-2991.
[19] NAVARAVONG L, KAN Z, SHEA J M, et al. Formation reconfiguration for mobile robots with network connectivity constraints[J]. Network IEEE, 2012, 26(4):18-24.
[20] ZHANG X Y, DUAN H B. Differential evolution-based receding horizon control design for multi-UVAs formation reconfiguration[J]. Transactions of the Institute of Measurement & Control, 2012, 32(1):165-183.