Solid Mechanics and Vehicle Conceptual Design

Dynamic analysis of fluid-structure interaction on aircraft fuel tank sloshing during maneuver

  • YANG Shanglin ,
  • CHEN Xiaofeng ,
  • DU Faxi ,
  • LEI Zhongqi ,
  • YAO Xiaohu
Expand
  • 1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China;
    2. Technology Center, Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610092, China

Received date: 2018-06-25

  Revised date: 2018-08-09

  Online published: 2018-11-14

Supported by

National Natural Science Foundation of China (11372113,11472110,11672110)

Abstract

When the aircraft performs the maneuver flight, the whole structure is in a large overload condition, and the problem of the fluid-structure interaction of the fuel tank sloshing is complicated. Based on a certain type of aircraft fuel tank, a fluid-structure interaction simulation method is proposed with ABAQUS and Star-CCM+ software. By investigating the fluid-structure interaction effect of the fuel tank sloshing during the Split-S maneuver, the morphological change of fuel, the pressure of the fluid filed and the time-history curves of the stress of tank components are obtained. The influence of the filling rate changes on tank sloshing is analyzed. The results indicate that the influence of the overload on the stress and strain of tank components is greater than that of the liquid sloshing, and the stress of all components increase with the increase of filling rate except the upper skin.

Cite this article

YANG Shanglin , CHEN Xiaofeng , DU Faxi , LEI Zhongqi , YAO Xiaohu . Dynamic analysis of fluid-structure interaction on aircraft fuel tank sloshing during maneuver[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(3) : 222471 -222471 . DOI: 10.7527/S1000-6893.2018.22471

References

[1] 苟兴宇, 王本利, 马兴瑞, 等. 航天工程中的贮箱类液固耦合动力学建模及耦合机理研究[J]. 强度与环境, 1998(1):9-16. GOU X Y, WANG B L, MA X R, et al. Dynamic modelling of liquid-solid coupling system with container in spacecraft engineering and investigation of its coupling mechanism[J]. Structure & Environment Engineering, 1998(1):9-16(in Chinese).
[2] ABRAMSON H N. The dynamic behavior of liquids in moving containers:NASA-SP-106[R]. Washington, D.C.:NASA, 1966.
[3] 尹立中, 王本利, 邹经湘. 航天器液体晃动与液固耦合动力学研究概述[J]. 哈尔滨工业大学学报, 1999(2):118-122. YIN L Z, WANG B L, ZOU J X. Introduction to investigation of liquid sloshing and liquid-solid coupled dynamics of spacecraft[J]. Journal of Harbin Institute of Technology, 1999(2):118-122(in Chinese).
[4] 李青, 王天舒, 马兴瑞. 充液航天器液体晃动和液固耦合动力学的研究与应用[J]. 力学进展, 2012, 42(4):472-481. LI Q, WANG T S, MA X R. Reviews on liquid sloshing dynamics and liquid-structure coupling dynamics in liquid-filled spacecrafts[J]. Advances in Mechanics, 2012, 42(4):472-481(in Chinese).
[5] 毛志祥, 杨觉敏. 飞机整体油箱的液固耦合振动计算[J]. 航空学报, 1990, 11(11):589-594. MAO Z X, YANG J M. Numerical analysis of solid-fluid interactive vibration of an aircraft integral tank[J]. Acta Aeronautica et Astronautica Sinica, 1990, 11(11):589-594(in Chinese).
[6] 王力, 谢辉, 张琳. 无人机发射过程燃油晃动分析[J]. 航空科学技术, 2016, 27(1):36-40. WANG L, XIE H, ZHANG L. Analysis of fuel sloshing in UAV launching process[J]. Aeronautical Science & Technology, 2016, 27(1):36-40(in Chinese).
[7] 杨瑞. 基于ALE有限元法的飞机整体油箱燃油晃动特性研究[D]. 哈尔滨:哈尔滨工业大学, 2016. YANG R. Research of fuel sloshing in aircraft integral tanks by the ALE finite element method[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese).
[8] YANG X, ZHANG Z, YANG J, et al. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank[J]. Springerplus, 2016, 5(1):1573.
[9] 刘富, 童明波, 赵宏韬. 飞机副油箱液体晃动动力学分析[J]. 航空计算技术, 2011, 41(3):54-56. LIU F, TONG M B, ZHAO H T. Dynamic analysis of liquid sloshing in an aircraft auxiliary fuel tank[J]. Aeronautical Computing Technique, 2011, 41(3):54-56(in Chinese).
[10] 唐浩, 徐建, 朱建辉, 等. 导弹油箱燃油晃动仿真分析[J]. 无线互联科技, 2015, 2(3):76-79. TANG H, XU J, ZHU J H, et al. Study of liquid sloshing in missile fuel tank based on SPH method[J]. Wireless Internet Technology, 2015, 2(3):76-79(in Chinese).
[11] 黄愉太. 飞机油箱晃动流固耦合动力学研究[D]. 广州:华南理工大学, 2015. HUANG Y T. Dynamics research on the fluid-structure interaction sloshing system in aircraft fuel tank[D]. Guangzhou:South China University of Technology, 2015(in Chinese).
[12] VELDMAN A E P, GERRITS J, LUPPES R, et al. The numerical simulation of liquid sloshing on board spacecraft[J]. Journal of Computational Physics, 2007, 224(1):82-99.
[13] HV S, SG S, SG M. Simulation of sloshing in rigid rectangular tank and a typical aircraft drop tank[J/OL]. Journal of Aeronautics & Aerospace Engineering, 2017, 06(1):1-9[2018-03-15].http://www.omicsonline.org/aeronautics-aerospace-engineering.php.DOI:10.4172/2168-9792.1000186.
[14] FARHAT C, CHIU E K, AMSALLEM D, et al. Modeling of fuel sloshing and its physical effects on flutter[J]. AIAA Journal, 2013, 51(9):2252-2265.
[15] REDDY D R, ADITYA N M V, GUPTA M S N. Stress and deformation analysis of aircraft's fuel tank under different inertia load cases in addition to a static test pressure using FEA[J]. Advanced Materials Research, 2015, 1115:527-530.
[16] 岳宝增, 李笑天. ALE有限元方法研究及应用[J]. 力学与实践, 2002, 24(2):7-11. YUE B Z, LI X T. Study of the ALE finite element method and its applications[J]. Mechanics in Engineering, 2002, 24(2):7-11(in Chinese).
[17] 邵绪强, 刘艳, 赵美花, 等. 基于SPH方法的流体物理模拟技术综述[J]. 自然科学, 2016, 4(2):171-181. SHAO X Q, LIU Y, ZHAO M H, et al. A survey on fluid physical simulation technology based on SPH method[J]. Open Journal of Nature Science, 2016, 4(2):171-181(in Chinese).
[18] 张健, 方杰, 范波芹. VOF方法理论与应用综述[J]. 水利水电科技进展, 2005, 25(2):67-70. ZHANG J, FANG J, FAN B Q. Advances in research of VOF method[J]. Advances in Science & Technology of Water Resources, 2005, 25(2):67-70(in Chinese).
[19] SOUTO-IGLESIAS A, BOTIA-VERA E, MARTIN A, et al. A set of canonical problems in sloshing. Part 0:Experimental setup and data processing[J]. Ocean Engineering, 2011, 38(16):1823-1830.
[20] DELORME, COLAGROSSI, SOUTO-IGLESIAS, et al. A set of canonical problems in sloshing, Part I:Pressure field in forced roll-comparison between experimental results and SPH[J]. Ocean Engineering, 2009, 36(2):168-178.
[21] ANSARI M R, FIROUZ-ABADI R D, GHASEMI M. Two phase modal analysis of nonlinear sloshing in a rectangular container[J]. Ocean Engineering, 2011, 38(11):1277-1282.
[22] PEREGRINE D H. Water-wave impact on walls[J]. Annual Review of Fluid Mechanics, 2003, 35(1):23-43.
[23] 王宝忠. 飞机设计手册第10册:结构设计[M]. 北京:航空工业出版社, 2000:601-602. WANG B Z. Aircraft design manual book 10:Structure design[M]. Beijing:Aviation Industry Press, 2000:601-602(in Chinese).
Outlines

/