Electronics and Electrical Engineering and Control

Reentry trajectory planning and guidance method based on inverse drag acceleration

  • HUANG Hanbin ,
  • LIANG Luyang ,
  • YANG Ye
Expand
  • Beijing Aerospace Automatic Control Institute, Beijing 100854, China

Received date: 2018-07-20

  Revised date: 2018-08-13

  Online published: 2018-10-31

Abstract

To address the entry guidance problem for the lifting vehicle, an online analytical planning and guidance method for the reentry trajectory based on the inverse drag acceleration corridor is proposed. The path constraints and terminal constraints are transformed into the inverse drag acceleration corridor described by cubic spline functions. Since the range-to-go is approximately linear in the inverse corridor, the feasible drag acceleration profile is solved analytically and updated linearly with the boundary of inverse drag acceleration. For the longitudinal tracking guidance, the guidance law (the magnitude of the bank angle) is calculated by the dynamic error characteristic of drag acceleration. For the lateral guidance, azimuth deviation is restricted by the bank angle reverse. The fast generation and update of reentry trajectory are realized online, and the method is combined with the tracking guidance technique by using the dynamic characteristics of drag acceleration. The proposed method has high computational efficiency and strong adaptability, showing potentials for engineering application.

Cite this article

HUANG Hanbin , LIANG Luyang , YANG Ye . Reentry trajectory planning and guidance method based on inverse drag acceleration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(12) : 322558 -322558 . DOI: 10.7527/S1000-6893.2018.22558

References

[1] HARPOLD J C, GAVERT D E. Space shuttle entry guidance performance results[J]. Journal of Guidance, Control, and Dynamics, 1983, 6(6):442-447.
[2] 姜鹏, 匡宇, 谢小平, 等. 国外高超声速飞行器研究现状及发展趋势[J]. 飞航导弹, 2017(7):19-24. JIANG P, KUANG Y, XIE X P, et al. Research status and development trend of hypersonic vehicle abroad[J]. Maneuverable Missile, 2017(7):19-24(in Chinese).
[3] BOGNER I. Description of apollo entry guidance:NASA TM-66-2012-2[R]. Washington D.C.:NASA, 1966.
[4] 王勇, 张艳, 白辰, 等. 吸气式高超声速飞行器制导与控制方法综述[J]. 兵器装备工程学报, 2017, 38(4):72-76. WANG Y, ZHANG Y, BAI C, et al. Review of guidance and control approaches for air-breathing hypersonic vehicle[J]. Journal of Ordnance Equipment Engineering, 2017, 38(4):72-76(in Chinese).
[5] ROENNEKE A J, MARKL A. Re-entry control of a drag vs energy profile[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(5):916-920.
[6] LU P, HANSON J M. Entry guidance for the X-33 vehicle[J]. Journal of Spacecraft and Rockets, 1998, 35(3):342-349.
[7] YAN X, WANG Z. Three-dimensional trajectory planning method for hypersonic glide vehicle[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston, VA:AIAA, 2012.
[8] 陈功. 升力式再入飞行器再入制导与末端能量管理研究[D]. 哈尔滨:哈尔滨工业大学, 2011:30-42. CHEN G. Study of reentry guidance and terminal energy management for lifting vehicle[D]. Harbin:Harbin Institute of Technology, 2011:30-42(in Chinese).
[9] 赵彪. 快船式飞行器再入轨迹优化与制导方法研究[D]. 哈尔滨:哈尔滨工业大学, 2013:93-96. ZHAO B. Trajectory optimization and entry guidance for clipper vehicle[D]. Harbin:Harbin Institute of Technology, 2013:93-96(in Chinese).
[10] 王涛, 张洪波, 朱如意, 等. 考虑阻力加速度的再入预测-校正制导算法[J]. 宇航学报, 2017, 38(2):143-151. WANG T, ZHANG H B, ZHU R Y, et al. Predictor-corrector reentry guidance based on drag acceleration[J]. Journal of Astronautics, 2017, 38(2):143-151(in Chinese).
[11] WANG T, ZHANG H, ZENG L, et al. A robust predictor-corrector entry guidance[J]. Aerospace Science and Technology, 2017, 66:103-111.
[12] ISHIZUKA K, SHIMURA K, ISHIMOTO S. A reentry guidance law employing simple real-time integration[C]//AIAA Paper. Reston, VA:AIAA, 1998.
[13] SARAF A, LEAVITT J A, MEASE K D, et al. Landing footprint computation for entry vehicles[C]//AIAA Paper. Reston, VA:AIAA, 2004.
[14] LEAVITT J A, MEASE K D. Feasible trajectory generation for atmospheric entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):473-481.
[15] MEASE K D, CHEN D T, TEUFEL P, et al. Reduced-order entry trajectory planning for acceleration guidance[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(2):257-266.
[16] DUKEMAN G A. Profile-following entry guidance using linear quadratic regulator theory[C]//AIAA GN&C Conference. Reston, VA:AIAA, 2002.
[17] HANSON J M, COUGHLIN D J, DUKEMAN G A, et al. Ascent, transition, entry, and abort guidance algorithm design for the X-33 Vehicle[C]//AIAA Paper. Reston, VA:AIAA, 1998.
[18] LEAVITT J A, SARAF A, CHEN D T, et al. Performance of evolved acceleration guidance logic for entry (EAGLE)[C]//AIAA GN&C Conference. Reston, VA:AIAA, 2002.
[19] YANG Y, LIANG L Y, WU H, et al. Onboard and analytic prediction algorithm of the range-to-go for the lifting vehicle[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston, VA:AIAA, 2017.
Outlines

/