With the advent of commercial aerospace exploration, research on reusable vehicles has received extensive attention. Some reusable rockets developed by commercial space companies represented by SpaceX have exhibited unprecedented competitiveness. To develop reusable rocket technology, LinkSpace has developed a small verifying rocket called RLV-T3, and gradually mastered the Vertical Takeoff and Veratical Landing (VTVL) technology through hundreds of tests on this verification machine. This paper mainly introduces the State Prediction Neural Network Control (SPNNC) algorithm, a thrust control technique in VTVL technology. The algorithm has strong robustness, wide application range, and easy adjustment of control parameters. This paper describes the principle of the algorithm in detail and simulates both SISO and MIMO systems using Simulink. At the same time, this paper discusses in detail the test of the SPNNC applied to the RLV-T3, including the basic characteristics of the small reusable rocket, control difficulties, existing problems, the flight curve of the physical quantities, and test conclusions. It has been verified by experiments that the SPNNC has good control performance, and the small recyclable rocket verification machine named RLV-T3 based on SPNNC can safely implement the whole process of vertical takeoff, ballistic flight, air hovering, and soft landing recovery.
[1] 汤一华, 余梦伦, 杨勇, 等. 第二代可重复使用运载器及其再入制导技术[J]. 导弹与航天运载技术, 2010(1):26-31. TANG Y H, YU M L, YANG Y, et al.Second generation reusable launch vehicle and its reentry guidance technologies[J]. Missiles and Space Vehicles, 2010(1):26-31(in Chinese).
[2] 王振国, 罗世彬, 吴建军. 可重复使用运载器研究进展[M]. 长沙:国防科技大学出版社, 2004:1-20. WANG Z G, LUO S B, WU J J. Researchprogress of reusable launch vehicles[M]. Changsha:National University of Defense Technology Press, 2004:1-20(in Chinese).
[3] 冯韶伟, 马忠辉, 吴义田, 等. 国外运载火箭可重复使用关键技术综述[J]. 导弹与航天运载技术, 2014(5):82-86. FENG S W, MA Z H, WU Y T, et al. Survey and review on key technologies of reusable launch vehicle abroad[J]. Missiles and Space Vehicles, 2014(5):82-86(in Chinese).
[4] 徐大富, 张哲, 吴克, 等. 垂直起降重复使用运载火箭发展趋势与关键技术研究进展[J]. 科学通报, 2016, 61(32):3453-3463. XU D F, ZHANG Z, WU K, et al. Research progress on the development trend and key technologies of reusable launch vehicles for VTVL[J]. Chinese Science Bulletin, 2016, 61(32):3453-3463(in Chinese).
[5] BLACKMORE L. Autonomous precision landing of space rockets[J]. The Bridge, 2016, 4(46):15-20.
[6] SCHARF D P, REGEHR M W, VAUGHAN G M, et al. ADAPT demonstrations of onboard large-divert guidance with a VTVL rocket[C]//2014 IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2014:1-18.
[7] LU P. Entry guidance and trajectory control for reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(1):143-149.
[8] TSUCHIYA T, MORI T. Optimal conceptual design of two-stage reusable rocket vehicles including trajectory optimization[J]. Journal of Spacecraft and Rockets, 2004, 41(5):770-778.
[9] 柯芳, 涅乌希宾. 飞行器智能控制系统研究进展[J]. 兵工学报, 2010, 31(7):939-949. KE F, NEI W X B. Researchprogress of intelligent control systems of aerocrafts[J]. Acta Armamentarii, 2010, 31(7):939-949(in Chinese).
[10] 李少远, 席裕庚, 陈增强, 等. 智能控制的新进展(I)[J]. 控制与决策, 2000, 15(1):6-12. LI S Y, XI Y G, CHEN Z Q, et al. Thenew progress in intelligent control (I)[J]. Journal of Control and Decision, 2000, 15(1):6-12(in Chinese).
[11] 王永骥, 涂健. 神经元网络控制[M]. 北京:机械工业出版社, 1998:1-3 WANG Y J, TU J. Neuralnetwork control[M]. Beijing:China Machine Press, 1998:1-3(in Chinese).
[12] 王宁, 涂健, 陈锦江. 自适应神经元网络的智能控制[C]//中国自动化学会控制理论及其应用年会. 沈阳:中国科学院沈阳自动化研究所, 1992:235-239. WANG N, TU J, CHEN J J. Intelligentcontrol of adaptive neuron networks[C]//Conference of Control Theory and Applications of CAA. Shenyang:Shenyang Institute of Automation, Chinese Academy of Sciences, 1992:235-239(in Chinese).
[13] 张建明, 王宁. 自适应单神经元控制器的研究[J]. 自动化仪表, 1998(12):4-9. ZHANG J M, WANG N. Studying onself-adaptive single neuron controller[J]. Process Automation Instrumentation, 1998(12):4-9(in Chinese).
[14] RICHARD C D, ROBERT H B. 现代控制系统[M]. 第八版. 谢红卫, 等译. 北京:高等教育出版社, 2015:103-105. RICHARD C D, ROBERT H B. Modern control system[M]. 8th ed. XIE H W, et al, translated. Beijing:Higher Education Press, 2015:103-105(in Chinese).
[15] 王晓哲, 李界家, 吴成东, 等. 多变量系统解耦方法综述[J]. 沈阳建筑大学学报(自然科学版), 2000, 16(2):143-145. WANG X Z, LI J J,WU C D, et al. A summary of multivariable decoupling methods[J]. Journal of Shenyang Jianzhu University (Natural Science), 2000, 16(2):143-145(in Chinese).
[16] 马平, 杨金芳, 崔长春, 等. 解耦控制的现状及发展[J]. 控制工程, 2005, 12(2):97-100. MA P, YANG J F, CUI C C, et al. Current situation and development of decoupling control[J]. Control Engineering of China, 2005, 12(2):97-100(in Chinese).
[17] 戴先中, 张兴华, 刘国海, 等. 感应电机的神经网络逆系统线性化解耦控制[J]. 中国电机工程学报, 2004, 24(1):112-117. DAI X Z, ZHANG X H, LIU G H, et al. Decoupling control of induction motors based on neural network inverse[J]. Proceedings of the CSEE, 2004, 24(1):112-117(in Chinese).
[18] 吴智铭, 许晓鸣, 王伟. 多变量控制系统频域分析和设计的综述[J]. 控制理论与应用, 1986(2):8-18. WU Z M, XU X M, WANG W. Areview of frequency domain analysis and design for multivariable control systems[J]. Control Theory & Applications, 1986(2):8-18(in Chinese).
[19] THAM M T. Multivariable control:An introduction to decoupling control[D]. Newcastle Upon Tyne:University of Newcastle Upon Tyne, 1984.
[20] 陈雪波, 李树生. 多变量系统稳定性分析[J]. 自动化学报, 1987, 13(5):388-392. CHEN X B, LI S S. Stabilityanalysis of multivariable systems[J]. Acta Automatica Sinica, 1987, 13(5):388-392(in Chinese).
[21] 贾杰, 刘连章, 曹琦. 导弹解耦控制方法综述[J]. 航空兵器, 2010(3):18-21. JIA J, LIU L Z, CAO Q. Survey on decoupling control methods for missile[J]. Aero Weaponry, 2010(3):18-21(in Chinese).
[22] 欧阳小平, 李锋, 朱莹, 等. 重载航空负载模拟器非线性最优前馈补偿控制[J]. 航空学报, 2016, 37(2):669-679. OUYANG X P, LI F, ZHU Y, et al.Nonlinear optimal feedforward compensation controller for heavy load aviation load simulator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):669-679(in Chinese).