Electronics and Electrical Engineering and Control

Intelligent air passenger transportation system utilizing integrated space-ground information network

  • NIU Wensheng
Expand
  • Xi'an Aeronauticsl Computing Technique Research Institute, AVIC, Xi'an 710068, China

Received date: 2018-06-04

  Revised date: 2018-06-26

  Online published: 2018-10-31

Abstract

Technologies including miniaturization of computer, Internet of Things (IoT), wireless broadband commu-nication and Artificial Intelligence (AI) are developed rapidly in recent years and bring significant impact to society. As enabling technologies in aviation application, these technologies will cause revolutionary changes to domains including aircraft design, aircraft flying, maintenance support, etc. Future aircraft will have powerful ability to intelligently perceive and process surrounding information, be multi-dimensionally connected with IoT through integrated space-ground information network, and accomplish intelligent flight, maintenance, operation business processes and so on by combining with the intelligent ground supporting system. For these new technologies mentioned above, this article summarizes their current development situation and application prospect on air passenger transportation industry. Based on these enabling technologies, this article proposes a concept of intelligent air passenger transportation system taking full advantage of the integrated space-ground information network, designs the sys-tem architecture, describes the typical application scenarios, and identifies several key techniques and challenges. The research results are helpful for manufacturer to better design intelligent airplane for future, and for airline to efficiently operate and manage intelligent airplane.

Cite this article

NIU Wensheng . Intelligent air passenger transportation system utilizing integrated space-ground information network[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(1) : 522415 -522415 . DOI: 10.7527/S1000-6893.2018.22415

References

[1] SESAR. European ATM master plan:ISBN 978-92-9216-034-0[R]. Belgium:EUROCONTROL, 2015.
[2] Joint Planning and Development Office. Concept of operations for the next generation air transportation system:OMB No. 0704-0188[R]. Washington,D.C.:FAA, 2007.
[3] 高海超, 吴嘉慧. 欧美下一代空管系统规划对比分析及启示[J]. 指挥信息系统与技术. 2017, 8(4):83-87. GAO H C, WU J H. Comparative analysis and enlightenment of next generation air traffic management system planning in Euramerica[J]. Command Information System and Technology, 2017, 8(4):83-87(in Chinese).
[4] Boeing. Boeing brings the e-enabled advantage to the air transport industry[EB/OL]. (2003-06-17)[2018-08-12]. http://boeing.mediaroom.com/2003-06-17-Boeing-Brings-the-E-Enabled-Advantage-to-the-Air-Transport-Industry.
[5] 狄建锴, 杨晓慧. 电子元器件器件小型化发展趋势探究[J]. 科技风, 2015(16):53-53. DI J K, YANG X H. Research on miniaturization trend of electronic components[J]. Technology Wind, 2015(16):53-53(in Chinese).
[6] 常国锋. 传感技术的概述[J]. 科技展望, 2014(10):17. CHANG G F. Overview of sensor technology[J]. Science and Technology, 2014(10):17(in Chinese).
[7] 王胡成, 徐晖, 程志密, 等. 5G网络技术研究现状和发展趋势[J]. 电信科学, 2015, 31(9):149-155. WANG H C, XU H, CHENG Z M, et al. Current research and development trend of 5G network technologies[J]. Telecommunications Science, 2015, 31(9):149-155(in Chinese).
[8] 刘志杰. 物联网技术的研究综述[J]. 软件, 2013, 34(5):164-168. LIU Z J. Internet of things technology research review[J]. Software, 2013, 34(5):164-168(in Chinese).
[9] 丁露, 倪佳. 物联网与传感器技术发展综述[J]. 中国仪器仪表, 2013(9):26-29. DING L, NI J. The overview of internet of things and sensor technology development[J]. China Instrumentation, 2013(9):26-29(in Chinese).
[10] 于涛. 浅谈人工智能的应用领域与其未来发展展望[J]. 科技创新与应用, 2017(8):83. YU T. Introduction to application and prospect of artificial intelligence[J]. Technology Innovation and Application, 2017(8):83(in Chinese).
[11] 杨茸. 自动驾驶成人工智能重点[J]. 计算机与网络, 2017, 43(5):14-15. YANG R. Autopilot becomes the focus of artificial intelligence[J]. Computer and Network, 2017, 43(5):14-15(in Chinese).
[12] 李娟妮, 华庆一, 张敏军. 人机交互中任务分析及任务建模方法综述[J]. 计算机应用研究, 2014, 31(10):2888-2895. LI J N, HUA Q Y, ZHANG M J. Survey of task analysis and task modeling methods in HCI[J]. Application Research of Computers, 2014, 31(10):2888-2895(in Chinese).
[13] DIESSA A A. Unlearning aristotelian physics:A study of knowledge-based learning[J]. Cognitive Science, 1982, 6(1):37-75.
[14] RASMUSSEN J. Skills, rules and knowledge, signals, signs and symbols, and other distinctions in human performance models[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983, 13(3):257-266.
[15] WICKEN C D. Multiple resources and performance prediction[J]. Theoretical Issues in Ergonomics Science, 2002, 3(2):159-177.
[16] 李贺武, 吴茜, 徐恪, 等. 天地一体化网络研究进展与趋势[J]. 科技导报, 2016, 34(14):95-106. LI H W, WU Q, XU K, et al. Progress and tendency of space and earth integrated network[J]. Science & Technology Review, 2016, 34(14):95-106(in Chinese).
[17] 陆洲, 秦智超, 张平.天地一体化信息网络系统初步设想[J]. 国际太空, 2016(7):20-25. LU Z, QIN Z C, ZHANG P. Initial layout of space-ground integrated information network system[J]. Space International, 2016(7):20-25(in Chinese).
[18] 吴曼青, 吴巍, 周彬, 等. 天地一体化信息网络总体架构设想[J]. 卫星与网络, 2016(3):30-36. WU M Q, WU W, ZHOU B, et al. General architecture consideration of space-ground integrated information network system[J]. Satellite & Network, 2016(3):30-36(in Chinese).
[19] 陆晓刚. 民用航空空地通信应用和发展[J]. 中国新通信, 2016(5):22-23. LU X G. Application and development of civil aviation air-ground communication[J]. China New Telecommunications, 2016(5):22-23(in Chinese).
[20] 潘卫军, 李佳羽. 航空空地宽带技术发展分析[J]. 装备制造技术, 2013, 18(2):181-183. PAN W J, LI J Y. Analysis on civil aviation in-flight broadband development[J]. Equipment Manufacturing Technology, 2013, 18(2):181-183(in Chinese).
[21] 谭述森. 北斗卫星导航系统的发展与思考[J]. 宇航学报, 2008, 29(2):391-396. TAN S S. Development and thought of compass navigation satellite system[J]. Journal of Astronautics, 2008, 29(2):391-396(in Chinese).
[22] 刘天华. 民用飞机数据链通信管理技术研究[J]. 电讯技术, 2010, 50(5):84-88. LIU T H. Data link applications for civil aircraft:Air-worthiness requirements and implementation suggestions[J]. Telecommunication Engineering, 2010, 50(5):84-88(in Chinese).
[23] 付道繁. 民航航线上LTE无线信号覆盖方案探讨[J]. 电信快报, 2016(11):19-23. FU D F. Solution discussion on LTE signal coverage of civil airways[J]. Telecommunications Information, 2016(11):19-23(in Chinese).
[24] 方琰崴, 王全, 潘振春. LTE航线覆盖专用网络[J]. 广东通信技术, 2013, 3(3):10-13. FANG Y W, WANG Q, PAN Z C. Dedicated LTE network for airway coverage[J]. Guangdong Communication Technology, 2013, 3(3):10-13(in Chinese).
[25] 徐益平. 天地一体化网络发展趋势与挑战[J]. 现代雷达, 2017, 39(7):12-16. XU Y P. The development trend and challenge of the space-ground integrated network[J]. Modern Radar, 2017, 39(7):12-16(in Chinese).
[26] 严林芳, 马双云, 叶军晖, 等. 智能化民用飞机概述[J]. 民用飞机设计与研究, 2017(3):130-134. YAN L F, MA S Y, YE J H, et al. Overview of intelligent civil aircraft[J]. Civil Aircraft Design & Research, 2017(3):130-134(in Chinese).
[27] 肖刚, 陈曦, 李正强. 基于大数据的民用飞机未来运营模式探索[J]. 民用飞机设计与研究, 2017(3):95-100. XIAO G, CHEN X, LI Z Q. Research on the future mode of aircraft operation based on big data[J]. Civil Aircraft Design & Research, 2017(3):95-100(in Chinese).
[28] 陈华群, 余娟. 基于改进贝叶斯的飞行签派安全评估研究[J]. 中国安全生产科学技术, 2014, 10(5):117-123. CHEN H Q, YU J. Research on safety assessment of flight dispatch based on improved bayesian[J]. Journal of Safety Science and Technology, 2014, 10(5):117-123(in Chinese).
[29] 孙凌, 罗长远, 吕真. 基于延迟转运的维修备件库存模型[J]. 计算机工程与应用, 2017, 53(19):265-270. SUN L, LUO C Y, LU Z. Maintenance spare parts inventory model with delayed transshipment[J]. Computer Engineering and Applications, 2017, 53(19):265-270(in Chinese).
[30] 吴文海, 张源原, 周思羽, 等.飞行员助手项目综述[J]. 航空学报, 2016, 37(12):3563-3577. WU W H, ZHANG Y Y, ZHOU S Y, et al. Overview of pilot's associate program[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3563-3577(in Chinese).
[31] 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵[J]. 计算机集成制造系统, 2017, 23(4):763-767. ZHUANG C B, LIU J H, XIONG H, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4):763-767(in Chinese).
[32] 李杰, 宫二玲, 孙志强, 等. 下一代机载网络技术评述[J]. 指挥与控制学报, 2015, 1(2):351-356. LI J, GONG E L, SUN Z Q, et al. An overview of next generation airborne networks[J]. Journal of Command and Control, 2015, 1(2):351-356(in Chinese).
[33] 汪帅, 安一纯. 新型航空电子系统总线互连技术发展探讨[J]. 工业技术创新, 2017, 4(5):102-104. WANG S, AN Y C. Discussion on the development of bus interconnection technology for new avionics systems[J]. Industrial Technology Innovation, 2017, 4(5):102-104(in Chinese).
[34] 邓罡, 龚正虎, 王宏. 现代数据中心网络资源管理技术分析与综述[J]. 通信学报, 2014, 35(2), 166-181. DENG Z, GONG Z H, WANG H. Analysis and survey of resource management on modern data center networks[J]. Journal on Communications, 2014, 35(2), 166-181(in Chinese).
[35] 尹浩, 乔波. 大数据驱动的网络信息平面[J]. 计算机学报, 2016, 39(1):126-139. YIN H, QIAO B. Big data-driven network information plane[J]. Chinese Journal of Computers, 2016, 39(1):126-139(in Chinese).
[36] CERCHIO R DE, RILEY C. Aircraft systems cyber security[C]//IEEE/AIAA Digital Avionics Systems Conference. Piscataway, NJ:IEEE Press, 2011:1C3.1-1C3.7.
[37] RTCA. DO-326A:Airworthiness security process specification:RTCA SC-216[S]. Washington D.C.:Radio Technical Commission for Aeronautics, 2014.
[38] RTCA. DO-355:Information security guidance for continuing airworthiness:RTCA SC-216[S]. Washington, D.C.:Radio Technical Commission for Aeronautics, 2014.
[39] 孙志强, 曹全新. 民用飞机机载网络安保设计方法研究[J]. 装备制造技术, 2015(8):158-160. SUN Z Q, CAO Q X. Network security technology for civil aircraft research[J]. Equipment Manufacturing Technology, 2015(8):158-160(in Chinese).
[40] RTCA. DO-356:Airworthiness security methods and considerations:RTCA SC-216[S]. Washington, D.C.:Radio Technical Commission for Aeronautics, 2014.
[41] SAE International. ARP4754A:Certification considerations for highly-integrated or complex aircraft systems[S]. Warrendale:SAE International, 2010.
[42] 裴兰珍, 罗赟骞, 景劼, 等. 网络安全漏洞渗透测试框架综述[J]. 电子信息对抗技术, 2016, 31(2):10-13. PEI L Z, LUO Y Q, JING J, et al. Review of network vulnerability penetration test framework[J]. Electronic Information Warfare Technology, 2016, 31(2):10-13(in Chinese).
[43] 王绍强, 邵丹, 王艳柏. 网络渗透测试技术分析研究[J]. 电子世界, 2015(17):154-155. WANG S Q, SHAO D, WANG Y B. Analysis and research on network vulnerability penetration test technique[J]. Electronics World, 2015(17):154-155(in Chinese).
[44] 黄宜华. 大数据机器学习系统研究进展[J]. 大数据, 2015(4):1-20. HANG Y H. Research progress on big data machine learning system[J]. Big Data Research, 2015(4):1-20(in Chinese).
[45] 何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4):327-336. HE Q, LI N, LUO W J, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4):327-336(in Chinese).
[46] 张军才, 茹伟, 胡宇凡. 民用客机E化趋势及其对航电系统的影响[J]. 航空计算技术, 2016, 46(5):115-118. ZHANG J C, RU W, HU Y F. Civil aircraft E-enabling trend and influence on avionics system[J]. Aeronautical Computing Technique, 2016, 46(5):115-118(in Chinese).
[47] 陈莹, 杨正东, 田永春, 等. 机载网络信息保障体系研究[J]. 通信技术, 2016, 49(1):97-102. CHEN Y, YANG Z D, TIAN Y C, et al. Information assurance system of airborne network[J]. Communications Technology, 2016, 49(1):97-102(in Chinese).
[48] GIULIO M, FABIO P, CARMEN S.CTTE:Support for developing and analyzing task models for interactive system design[J].IEEE Transactions on Software Engineering, 2002, 28(8):797-813.
[49] 王寿彪, 李新明, 刘东. 基于大数据形式概念认知计算的装备体系动态演化建模框架建构[J]. 指挥与控制学报, 2016, 2(3):248-255. WANG S B, LI X M, LIU D. Dynamic evolution modeling framework constructing for equipment system of systems based on formal concept of cognitive computing with big data[J]. Journal of Command and Control, 2016, 2(3):248-255(in Chinese).
[50] 雷凡, 李艳梅. 基于三层模型的机器学习建模工具设计与实现[J]. 航空计算技术, 2017, 47(3):98-101. LEI F, LI Y M. Design and realization of modeling tool of machine learning based on three-layer model[J]. Aeronautical Computing Technique, 2017, 47(3):98-101(in Chinese).
Outlines

/