Solid Mechanics and Vehicle Conceptual Design

Nonlinear response analysis and test verification for thin-walled structures to thermal-acoustic loads

  • SHA Yundong ,
  • ZHANG Mohan ,
  • ZHAO Fengtong ,
  • ZHU Fulei
Expand
  • 1. Liaoning Province Key Laboratory of Advanced Measurement and Test Technology of Aviation Propulsion Systems, Shenyang Aerospace University, Shenyang 110136, China;
    2. School of Energy and Power Engineering, Beihang University, Beijing 100083, China

Received date: 2018-07-16

  Revised date: 2018-08-09

  Online published: 2018-10-17

Supported by

Aeronautical Science Foundation of China (20151554002)

Abstract

To address the nonlinear response to thin-walled structure with large deflection under thermal-acoustic load, a thermal-acoustic excitation test and its corresponding simulation analysis for clamped metallic thin-walled plates have been implemented. The calculated results and the test results are consistent, verifying the effectiveness of the calculation method and the numerical model for thin-walled plate subjected to thermal-acoustic loadings. Based on these findings, the dynamic response calculation for a stiffen-reinforced plate structure under different thermal-acoustic load combinations is completed. Based on the obtained time-domain displacement response, analyses on structure vibration behaviors are mainly focused on three typical motions of the post-buckled plate, indicating that the relative strength between the thermal load and the acoustic load determines the Snap-through forms of the plate. The Probability Density Functions (PDF) of the displacement response are drawn by employing statistical analysis showing that the PDF of post-buckled plate exhibits double peak phenomena. Then the Power Spectral Density (PSD) functions are used to analyze the variations of response frequencies and their corresponding peaks with the increase of temperatures, as well as the determination of softening and hardening areas of the plate. At last, this paper discusses the variation of tensile stress with compressive stress in pre/post buckling areas, and gives the reasons for this kind of change. The work represented in this paper can provide some reference for dynamic response analysis and dynamic strength design of thin-walled structures subjected to thermal acoustic loadings.

Cite this article

SHA Yundong , ZHANG Mohan , ZHAO Fengtong , ZHU Fulei . Nonlinear response analysis and test verification for thin-walled structures to thermal-acoustic loads[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(4) : 222544 -222544 . DOI: 10.7527/S1000-6893.2018.22544

References

[1] BLEVINS R D, BOFILIOS D, HOLEHOUSE I, et al. Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure:AFRL-RB-WP-TR-2009-3139[R].Chula Vista:Goodrich Aerostructures Group, 2009.
[2] PRZEKOP A, RIZZI S A. Dynamic snap-through of thin-walled structures by a reduced-order method[J]. AIAA Journal, 2007, 45(10):2510-2519.
[3] SHA Y D, GAO Z J, XU F. Influences of thermal loads on nonlinear response of thin-walled structures in thermo-acoustic environment[J]. Applied Mechanics and Materials, 2012, 105-107:220-226.
[4] 沙云东, 王建, 赵奉同, 等. 热声载荷下薄壁结构振动响应试验验证与疲劳分析[J]. 航空动力学报, 2017, 32(11):2659-2671. SHA Y D, WANG J, ZHAO F T, et al.Vibration response experimental verification and fatigue analysis of thin-walled structures to thermal-acoustic loads[J].Journal of Aerospace Power, 2017, 32(11):2659-2671(in Chinese).
[5] 沙云东, 王建, 骆丽, 等. 热声载荷作用下金属薄壁结构的振动响应与试验验证[J].振动与冲击, 2017, 36(20):218-224. SHA Y D, WANG J, LUO L, et al. Vibration responses analysis and experimental verification of metallic thin-walled structures to thermal-acoustic loadings[J]. Journal of Vibration and Shock, 2017, 36(20):218-224(in Chinese).
[6] SHA Y D, WEI J, GAO Z J. Nonlinear response with snap-through and fatigue life prediction for panels to thermo-acoustic loadings[J]. Journal of Vibration and Control, 2014, 20(5):679-697.
[7] PRZEKOP A, GUO X Y, AZZOUZ M S, et al. Nonlinear response and fatigue life of shallow shells to acoustic excitation using finite element:AIAA-2003-1710[R]. Reston, VA:AIAA, 2003.
[8] CRISTOFORI A, BENASCIUTTI D, TOVO R. A stress invariant based spectral method to estimate fatigue life under multiaxial random loading[J].International Journal of Fatigue, 2010, 33(7):887-899.
[9] ISTENES JR R R, RIZZI S A, WOLFE H F. Experimental nonlinear random vibration results of thermally buckled composite panels:AIAA-1995-1345[R]. Reston, VA:AIAA, 1995.
[10] IWAN W D, PATULA E J. The merit of different error minimization criteria in approximate analysis[J]. Journal of Applied Mechanics, 1972, 39(1):257-262.
[11] SHINOZUKA M, JAN C M. Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972, 25(1):111-128.
[12] SHINOZUKA M, WEN Y K. Monte Carlo solution of nonlinear vibrations[J].AIAA Journal, 1972, 10(1):37-40.
[13] VAICAITIS R, KAVALLIERATOS P A. Nonlinear response of composite panels to random excitation:AIAA-1993-1426[R]. Reston, VA:AIAA, 1993.
[14] VAICAITIS R. Time domain approach for nonlinear response and sonic fatigue of NASP thermal protection systems:AIAA-1991-1177[R]. Reston, VA:AIAA, 1991.
[15] ROBERTS J B, SPANOS P D. Random vibration and statistical linearization[M]. New York:Wiley, 1990.
[16] ZIENKIEWICZ O C, TAYLOR R L, ZHU J Z. Finite element method-Its basis and fundamentals[M]. 6th ed. Amsterdam:Elsevier, 2005:1.
[17] DHAINAUT J M, GUO X Y, MEI C, et al. Nonlinear random response of panels in an elevated thermal-acoustic environment[J]. Journal of Aircraft, 2003, 40(4):683-691.
[18] 杨智春, 刘丽媛, 王晓晨. 高超声速飞行器受热壁板的气动弹性声振分析[J]. 航空学报, 2016, 37(12):3578-3587. YANG Z C, LIU L Y, WANG X C.Analysis of aeroelastic vibro-acoustic response for heated panel of hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3578-3587(in Chinese).
[19] 杨雄伟, 李跃明, 耿谦. 基于混合FE-SEA法高温环境飞行器宽频声振特性分析[J].航空学报, 2011, 32(11):1851-1859. YANG X W, LI Y M, GENG Q.Broadband vibro-acoustic response of aircraft in high temperature environment based on hybrid FE-SEA[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(11):1851-1859(in Chinese).
[20] 桂业伟, 刘磊, 代光月, 等.高超声速飞行器流-热-固耦合研究现状与软件开发[J].航空学报, 2017, 38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):020844(in Chinese).
[21] LIU L, LV B Y, LI Y S.Dynamic response of acoustically excited plates resting on elastic foundations in thermal environments[J].Composite Structures, 2016, 156:35-46.
[22] 刘磊, 代光月, 曾磊, 等. 气动力/热与结构多场耦合试验模型方案初步设计[J]. 航空学报, 2017, 38(11):221165. LIU L, DAI G Y, ZENG L, et al.Preliminary test model design of fluid-thermal-structural interaction problems[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(11):221165(in Chinese).
[23] 侯薇, 王晓宇, 景晓东, 等. 1/4波长驻波型热声发动机的非线性模型研究[J].航空学报, 2016, 37(7):2091-2101. HOU W, WANG X Y, JING X D, et al. A quasi-one-dimensional nonlinear model of an open-closed standing-wave thermoacoustic engine[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2091-2101(in Chinese).
[24] JACOBS J H, GRUENSFELDER C, HEDGECOCK C E.Thermal acoustic fatigue of ceramic matrix composite materials:AIAA-1993-1319[R].Reston, VA:AIAA, 1993.
Outlines

/